Origin of bistability underlying mammalian cell cycle entry.
Mol Syst Biol
; 7: 485, 2011 Apr 26.
Article
em En
| MEDLINE
| ID: mdl-21525871
Precise control of cell proliferation is fundamental to tissue homeostasis and differentiation. Mammalian cells commit to proliferation at the restriction point (R-point). It has long been recognized that the R-point is tightly regulated by the Rb-E2F signaling pathway. Our recent work has further demonstrated that this regulation is mediated by a bistable switch mechanism. Nevertheless, the essential regulatory features in the Rb-E2F pathway that create this switching property have not been defined. Here we analyzed a library of gene circuits comprising all possible link combinations in a simplified Rb-E2F network. We identified a minimal circuit that is able to generate robust, resettable bistability. This minimal circuit contains a feed-forward loop coupled with a mutual-inhibition feedback loop, which forms an AND-gate control of the E2F activation. Underscoring its importance, experimental disruption of this circuit abolishes maintenance of the activated E2F state, supporting its importance for the bistability of the Rb-E2F system. Our findings suggested basic design principles for the robust control of the bistable cell cycle entry at the R-point.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Ciclo Celular
/
Proteína do Retinoblastoma
/
Proteínas de Ciclo Celular
/
Retroalimentação Fisiológica
/
Fatores de Transcrição E2F
/
Redes Reguladoras de Genes
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Mol Syst Biol
Ano de publicação:
2011
Tipo de documento:
Article