Your browser doesn't support javascript.
loading
Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism.
Chang, Roger L; Ghamsari, Lila; Manichaikul, Ani; Hom, Erik F Y; Balaji, Santhanam; Fu, Weiqi; Shen, Yun; Hao, Tong; Palsson, Bernhard Ø; Salehi-Ashtiani, Kourosh; Papin, Jason A.
Afiliação
  • Chang RL; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
Mol Syst Biol ; 7: 518, 2011 Aug 02.
Article em En | MEDLINE | ID: mdl-21811229
Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chlamydomonas reinhardtii / Redes e Vias Metabólicas Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Syst Biol Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Chlamydomonas reinhardtii / Redes e Vias Metabólicas Tipo de estudo: Prognostic_studies Idioma: En Revista: Mol Syst Biol Ano de publicação: 2011 Tipo de documento: Article