Your browser doesn't support javascript.
loading
Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects.
Harris, Stephen E; MacDougall, Mary; Horn, Diane; Woodruff, Kathleen; Zimmer, Stephanie N; Rebel, Vivienne I; Fajardo, Roberto; Feng, Jian Q; Gluhak-Heinrich, Jelica; Harris, Marie A; Abboud Werner, Sherry.
Afiliação
  • Harris SE; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Bone ; 50(1): 42-53, 2012 Jan.
Article em En | MEDLINE | ID: mdl-21958845
CSF-1, a key regulator of mononuclear phagocyte production, is highly expressed in the skeleton by osteoblasts/osteocytes and in a number of nonskeletal tissues such as uterus, kidney and brain. The spontaneous mutant op/op mouse has been the conventional model of CSF-1 deficiency and exhibits a pleiotropic phenotype characterized by osteopetrosis, and defects in hematopoiesis, fertility and neural function. Studies to further delineate the biologic effect of CSF-1 within various tissues have been hampered by the lack of suitable models. To address this issue, we generated CSF-1 floxed/floxed mice and demonstrate that Cre-mediated recombination using Meox2Cre, a Cre line expressed in epiblast during early embryogenesis, results in mice with ubiquitous CSF-1 deficiency (CSF-1KO). Homozygous CSF-1KO mice lacked CSF-1 in all tissues and displayed, in part, a similar phenotype to op/op mice that included: failure of tooth eruption, osteopetrosis, reduced macrophage densities in reproductive and other organs and altered hematopoiesis with decreased marrow cellularity, circulating monocytes and B cell lymphopoiesis. In contrast to op/op mice, CSF-1KO mice showed elevated circulating and splenic T cells. A striking feature in CSF-1KO mice was defective osteocyte maturation, bone mineralization and osteocyte-lacunar system that was associated with reduced dentin matrix protein 1 (DMP1) expression in osteocytes. CSF-1KO mice also showed a dramatic reduction in osteomacs along the endosteal surface that may have contributed to the hematopoietic and cortical bone defects. Thus, our findings show that ubiquitous CSF-1 gene deletion using a Cre-based system recapitulates the expected osteopetrotic phenotype. Moreover, results point to a novel link between CSF-1 and osteocyte survival/function that is essential for maintaining bone mass and strength during skeletal development.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteócitos / Osteopetrose / Fator Estimulador de Colônias de Macrófagos / Proteínas de Homeodomínio / Integrases Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Bone Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteócitos / Osteopetrose / Fator Estimulador de Colônias de Macrófagos / Proteínas de Homeodomínio / Integrases Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Bone Ano de publicação: 2012 Tipo de documento: Article