Your browser doesn't support javascript.
loading
Study on electromigratively-telescoping carbon-nanotube-based reversible-tuner.
Kang, Jeong Won; Kim, Ki-Sub; Lee, Jun Ha; Kwon, Oh Kuen; Hwang, Ho Jung.
Afiliação
  • Kang JW; Department of Computer Engineering, Chungju National University, Chungju 380-702, Korea.
J Nanosci Nanotechnol ; 11(7): 6359-63, 2011 Jul.
Article em En | MEDLINE | ID: mdl-22121715
ABSTRACT
We conceptually investigated a carbon-nanotube-based tuner operated by the telescoping nanotube motion in a multi-walled carbon-nanotube induced by electromigration of an encapsulated nanoparticle. The telescoping lengths in the proposed carbon-nanotube-based tuner could be achieved from the electromigration phenomena of the nanoparticle embedded in the carbon nanotube. So the core part is the nanoparticle shuttle and a multi-walled carbon-nanotube with ultra-low interlayer friction. The tuning of this telescoping carbon-nanotube-based tuner is achieved from the electric current flow. The properties of operation were investigated via classical molecular dynamics simulations and then the parameters of the continuum model were then calibrated to fit the results of the molecular dynamics simulations. Since the effective boundary considered as the movable clamp affected the vibration of the telescoping nanotube, the calibrated Young's modulus of this work were lower than the those of the previous works. Presented tuners are controllable in a few nanometers, and their operations are robust and reliable.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Nanosci Nanotechnol Ano de publicação: 2011 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Nanosci Nanotechnol Ano de publicação: 2011 Tipo de documento: Article