Your browser doesn't support javascript.
loading
Bottom-up view of water network-mediated CO2 reduction using cryogenic cluster ion spectroscopy and direct dynamics simulations.
Breen, Kristin J; DeBlase, Andrew F; Guasco, Timothy L; Voora, Vamsee K; Jordan, Kenneth D; Nagata, Takashi; Johnson, Mark A.
Afiliação
  • Breen KJ; Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States.
J Phys Chem A ; 116(3): 903-12, 2012 Jan 26.
Article em En | MEDLINE | ID: mdl-22145700
ABSTRACT
The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO(2)·(H(2)O)(6)(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Água / Simulação de Dinâmica Molecular Idioma: En Revista: J Phys Chem A Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Água / Simulação de Dinâmica Molecular Idioma: En Revista: J Phys Chem A Ano de publicação: 2012 Tipo de documento: Article