Your browser doesn't support javascript.
loading
Near-IR absorbing solar cell sensitized with bacterial photosynthetic membranes.
Woronowicz, Kamil; Ahmed, Saquib; Biradar, Archana A; Biradar, Ankush V; Birnie, Dunbar P; Asefa, Tewodros; Niederman, Robert A.
Afiliação
  • Woronowicz K; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
Photochem Photobiol ; 88(6): 1467-72, 2012.
Article em En | MEDLINE | ID: mdl-22708611
ABSTRACT
Current interest in natural photosynthesis as a blueprint for solar energy conversion has led to the development of a biohybrid photovoltaic cell in which bacterial photosynthetic membrane vesicles (chromatophores) have been adsorbed to a gold electrode surface in conjunction with biological electrolytes (quinone [Q] and cytochrome c; Magis et al. [2010] Biochim. Biophys. Acta 1798, 637-645). Since light-driven current generation was dependent on an open circuit potential, we have tested whether this external potential could be replaced in an appropriately designed dye-sensitized solar cell (DSSC). Herein, we show that a DSSC system in which the organic light-harvesting dye is replaced by robust chromatophores from Rhodospirillum rubrum, together with Q and cytochrome c as electrolytes, provides band energies between consecutive interfaces that facilitate a unidirectional flow of electrons. Solar I-V testing revealed a relatively high I(sc) (short-circuit current) of 25 µA cm(-2) and the cell was capable of generating a current utilizing abundant near-IR photons (maximum at ca 880 nm) with greater than eight-fold higher energy conversion efficiency than white light. These studies represent a powerful demonstration of the photoexcitation properties of a biological system in a closed solid-state device and its successful implementation in a functioning solar cell.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Rhodospirillum rubrum / Energia Solar / Cromatóforos Bacterianos / Luz Idioma: En Revista: Photochem Photobiol Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fotossíntese / Rhodospirillum rubrum / Energia Solar / Cromatóforos Bacterianos / Luz Idioma: En Revista: Photochem Photobiol Ano de publicação: 2012 Tipo de documento: Article