Your browser doesn't support javascript.
loading
Effect of halide-modified model carbon supports on catalyst stability.
Wood, Kevin N; Pylypenko, Svitlana; Olson, Tim S; Dameron, Arrelaine A; O'Neill, Kevin; Christensen, Steven T; Dinh, Huyen N; Gennett, Thomas; O'Hayre, Ryan.
Afiliação
  • Wood KN; Department of Metallurgical & Materials Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA.
ACS Appl Mater Interfaces ; 4(12): 6728-34, 2012 Dec.
Article em En | MEDLINE | ID: mdl-23194033
ABSTRACT
Modification of physiochemical and structural properties of carbon-based materials through targeted functionalization is a useful way to improve the properties and performance of such catalyst materials. This work explores the incorporation of dopants, including nitrogen, iodine, and fluorine, into the carbon structure of highly-oriented pyrolytic graphite (HOPG) and its potential benefits on the stability of PtRu catalyst nanoparticles. Evaluation of the changes in the catalyst nanoparticle coverage and size as a function of implantation parameters reveals that carbon supports functionalized with a combination of nitrogen and fluorine provide the most beneficial interactions, resulting in suppressed particle coarsening and dissolution. Benefits of a carefully tuned support system modified with fluorine and nitrogen surpass those obtained with nitrogen (no fluorine) modification. Ion implantation of iodine into HOPG results in a consistent amount of structural damage to the carbon matrix, regardless of dose. For this modification, improvements in stability are similar to nitrogen modification; however, the benefit is only observed at higher dose conditions. This indicates that a mechanism different than the one associated with nitrogen may be responsible for the improved durability.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2012 Tipo de documento: Article