Your browser doesn't support javascript.
loading
Substrate specificity and reaction mechanism of purified alkane hydroxylase from the hydrocarbonoclastic bacterium Alcanivorax borkumensis (AbAlkB).
Naing, Swe-Htet; Parvez, Saba; Pender-Cudlip, Marilla; Groves, John T; Austin, Rachel N.
Afiliação
  • Naing SH; Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston, ME 04240, USA.
J Inorg Biochem ; 121: 46-52, 2013 Apr.
Article em En | MEDLINE | ID: mdl-23337786
ABSTRACT
An alkane hydroxylase from the marine organism Alcanivorax borkumensis (AbAlkB) was purified. The purified protein retained high activity in an assay with purified rubredoxin (AlkG), purified maize ferredoxin reductase, NADPH, and selected substrates. The reaction mechanism of the purified protein was probed using the radical clock substrates bicyclo[4.1.0]heptane (norcarane), bicyclo[3.1.0]hexane (bicyclohexane), methylphenylcyclopropane and deuterated and non-deuterated cyclohexane. The distribution of products from the radical clock substrates supports the hypothesis that purified AbAlkB hydroxylates substrates by forming a substrate radical. Experiments with deuterated cyclohexane indicate that the rate-determining step has a significant CH bond breaking character. The products formed from a number of differently shaped and sized substrates were characterized to determine the active site constraints of this AlkB. AbAlkB can catalyze the hydroxylation of a large number of aromatic compounds and linear and cyclic alkanes. It does not catalyze the hydroxylation of alkanes with a chain length longer than 15 carbons, nor does it hydroxylate sterically hindered C-H bonds.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rubredoxinas / Proteínas de Bactérias / Citocromo P-450 CYP4A / Alcanivoraceae Idioma: En Revista: J Inorg Biochem Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rubredoxinas / Proteínas de Bactérias / Citocromo P-450 CYP4A / Alcanivoraceae Idioma: En Revista: J Inorg Biochem Ano de publicação: 2013 Tipo de documento: Article