A novel probe for the non-invasive detection of tumor-associated inflammation.
Oncoimmunology
; 2(2): e23034, 2013 Feb 01.
Article
em En
| MEDLINE
| ID: mdl-23526711
A novel dual-mode contrast agent was formulated through the addition of an optical near infrared (NIR) probe to a perfluorocarbon (PFC)-based 19F magnetic resonance imaging (MRI) agent, which labels inflammatory cells in situ. A single PFC-NIR imaging agent enables both a qualitative, rapid optical monitoring of an inflammatory state and a quantitative, detailed and tissue-depth independent magnetic resonance imaging (MRI). The feasibility of in vivo optical imaging of the inflammatory response was demonstrated in a subcutaneous murine breast carcinoma model. Ex vivo optical imaging was used to quantify the PFC-NIR signal in the tumor and organs, and results correlated well with quantitative 19F NMR analyses of intact tissues. 19F MRI was employed to construct a three-dimensional image of the cellular microenvironment at the tumor site. Flow cytometry of isolated tumor cells was used to identify the cellular localization of the PFC-NIR probe within the tumor microenvironment. Contrast is achieved through the labeling of host cells involved in the immune response, but not tumor cells. The major cellular reservoir of the imaging agent were tumor-infiltrating CD11b+ F4/80low Gr-1low cells, a cell subset sharing immunophenotypic features with myeloid-derived suppressor cells (MDSCs). These cells are recruited to sites of inflammation and are implicated in immune evasion and tumor progression. This PFC-NIR contrast agent coupled to non-invasive, quantitative imaging techniques could serve as a valuable tool for evaluating novel anticancer agents.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Qualitative_research
/
Risk_factors_studies
Idioma:
En
Revista:
Oncoimmunology
Ano de publicação:
2013
Tipo de documento:
Article