Your browser doesn't support javascript.
loading
Chemerin connects fat to arterial contraction.
Watts, Stephanie W; Dorrance, Anne M; Penfold, Mark E; Rourke, Jillian L; Sinal, Christopher J; Seitz, Bridget; Sullivan, Timothy J; Charvat, Trevor T; Thompson, Janice M; Burnett, Robert; Fink, Gregory D.
Afiliação
  • Watts SW; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA. wattss@msu.edu
Arterioscler Thromb Vasc Biol ; 33(6): 1320-8, 2013 Jun.
Article em En | MEDLINE | ID: mdl-23559624
ABSTRACT

OBJECTIVE:

Obesity and hypertension are comorbid in epidemic proportion, yet their biological connection is largely a mystery. The peptide chemerin is a candidate for connecting fat deposits around the blood vessel (perivascular adipose tissue) to arterial contraction. We presently tested the hypothesis that chemerin is expressed in perivascular adipose tissue and is vasoactive, supporting the existence of a chemerin axis in the vasculature. APPROACH AND

RESULTS:

Real-time polymerase chain reaction, immunohistochemistry, and Western analyses supported the synthesis and expression of chemerin in perivascular adipose tissue, whereas the primary chemerin receptor ChemR23 was expressed both in the tunica media and endothelial layer. The ChemR23 agonist chemerin-9 caused receptor, concentration-dependent contraction in the isolated rat thoracic aorta, superior mesenteric artery, and mesenteric resistance artery, and contraction was significantly amplified (more than 100%) when nitric oxide synthase was inhibited and the endothelial cell mechanically removed or tone was placed on the arteries. The novel ChemR23 antagonist CCX832 inhibited phenylephrine-induced and prostaglandin F2α-induced contraction (+perivascular adipose tissue), suggesting that endogenous chemerin contributes to contraction. Arteries from animals with dysfunctional endothelium (obese or hypertensive) demonstrated a pronounced contraction to chemerin-9. Finally, mesenteric arteries from obese humans demonstrate amplified contraction to chemerin-9.

CONCLUSIONS:

These data support a new role for chemerin as an endogenous vasoconstrictor that operates through a receptor typically attributed to function only in immune cells.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aorta Torácica / Vasoconstrição / Tecido Adiposo / Quimiocinas / Adipocinas / Artérias Mesentéricas / Músculo Liso Vascular Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Arterioscler Thromb Vasc Biol Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aorta Torácica / Vasoconstrição / Tecido Adiposo / Quimiocinas / Adipocinas / Artérias Mesentéricas / Músculo Liso Vascular Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Arterioscler Thromb Vasc Biol Ano de publicação: 2013 Tipo de documento: Article