Your browser doesn't support javascript.
loading
Immunomodulating effects of environmentally realistic copper concentrations in Mytilus edulis adapted to naturally low salinities.
Höher, Nicole; Regoli, Francesco; Dissanayake, Awantha; Nagel, Matthias; Kriews, Michael; Köhler, Angela; Broeg, Katja.
Afiliação
  • Höher N; Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany. nicole.hoeher@awi.de
Aquat Toxicol ; 140-141: 185-95, 2013 Sep 15.
Article em En | MEDLINE | ID: mdl-23811023
ABSTRACT
The monitoring of organisms' health conditions by the assessment of their immunocompetence may serve as an important criterion for the achievement of the Good Environmental Status (GES) as defined in the Marine Strategy Framework Directive (EU). In this context, the complex role of natural environmental stressors, e.g. salinity, and interfering or superimposing effects of anthropogenic chemicals, should be carefully considered, especially in scenarios of low to moderate contamination. Organisms from the Baltic Sea have adapted to the ambient salinity regime, however energetically costly osmoregulating processes may have an impact on the capability to respond to additional stress such as contamination. The assessment of multiple stressors, encompassing natural and anthropogenic factors, influencing an organisms' health was the main aim of the present study. Immune responses of Mytilus edulis, collected and kept at natural salinities of 12‰ (LS) and 20‰ (MS), respectively, were compared after short-term exposure (1, 7 and 13 days) to low copper concentrations (5, 9 and 16 µg/L Cu). A significant interaction of salinity and copper exposure was observed in copper accumulation. LS mussels accumulated markedly more copper than MS mussels. No combined effects were detected in cellular responses. Bacterial clearance was mostly achieved by phagocytosis, as revealed by a strong positive correlation between bacterial counts and phagocytic activity, which was particularly pronounced in LS mussels. MS mussels, on the other hand, seemingly accomplished bacterial clearance by employing additional humoral factors (16 µg/L Cu). The greatest separating factor in the PCA biplot between LS and MS mussels was the proportion of granulocytes and hyalinocytes while functional parameters (phagocytic activity and bacterial clearance) were hardly affected by salinity, but rather by copper exposure. In conclusion, immune responses of the blue mussel may be suitable and sensitive biomarkers for the assessment of ecosystem health in brackish waters (10-20‰S).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Cobre / Mytilus edulis / Salinidade Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Aquat Toxicol Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Cobre / Mytilus edulis / Salinidade Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Aquat Toxicol Ano de publicação: 2013 Tipo de documento: Article