Your browser doesn't support javascript.
loading
Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface.
Wang, Yang; Sun, Huijuan; Tan, Shijing; Feng, Hao; Cheng, Zhengwang; Zhao, Jin; Zhao, Aidi; Wang, Bing; Luo, Yi; Yang, Jinlong; Hou, J G.
Afiliação
  • Wang Y; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
Nat Commun ; 4: 2214, 2013.
Article em En | MEDLINE | ID: mdl-23896829
The chemical reactivity of different surfaces of titanium dioxide (TiO2) has been the subject of extensive studies in recent decades. The anatase TiO2(001) and its (1 × 4) reconstructed surfaces were theoretically considered to be the most reactive and have been heavily pursued by synthetic chemists. However, the lack of direct experimental verification or determination of the active sites on these surfaces has caused controversy and debate. Here we report a systematic study on an anatase TiO2(001)-(1 × 4) surface by means of microscopic and spectroscopic techniques in combination with first-principles calculations. Two types of intrinsic point defects are identified, among which only the Ti(3+) defect site on the reduced surface demonstrates considerable chemical activity. The perfect surface itself can be fully oxidized, but shows no obvious activity. Our findings suggest that the reactivity of the anatase TiO2(001) surface should depend on its reduction status, similar to that of rutile TiO2 surfaces.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Ano de publicação: 2013 Tipo de documento: Article