Your browser doesn't support javascript.
loading
Chk1 inhibition in p53-deficient cell lines drives rapid chromosome fragmentation followed by caspase-independent cell death.
Del Nagro, Christopher J; Choi, Jonathan; Xiao, Yang; Rangell, Linda; Mohan, Sankar; Pandita, Ajay; Zha, Jiping; Jackson, Peter K; O'Brien, Thomas.
Afiliação
  • Del Nagro CJ; Discovery Oncology; Genentech; San Francisco, CA.
  • Choi J; Discovery Oncology; Genentech; San Francisco, CA.
  • Xiao Y; Discovery Oncology; Genentech; San Francisco, CA.
  • Rangell L; Department of Pathology; Genentech; San Francisco, CA.
  • Mohan S; Department of Research Diagnostics; Genentech; San Francisco, CA.
  • Pandita A; Department of Research Diagnostics; Genentech; San Francisco, CA.
  • Zha J; Department of Pathology; Genentech; San Francisco, CA.
  • Jackson PK; Discovery Oncology; Genentech; San Francisco, CA.
  • O'Brien T; Discovery Oncology; Genentech; San Francisco, CA.
Cell Cycle ; 13(2): 303-14, 2014.
Article em En | MEDLINE | ID: mdl-24247149
ABSTRACT
Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G2-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4-8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G2-checkpoints in p53 proficient cells.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Proteína Supressora de Tumor p53 / Cromossomos Humanos / Caspases / Inibidores de Proteínas Quinases / Fragmentação do DNA Limite: Humans Idioma: En Revista: Cell Cycle Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Quinases / Proteína Supressora de Tumor p53 / Cromossomos Humanos / Caspases / Inibidores de Proteínas Quinases / Fragmentação do DNA Limite: Humans Idioma: En Revista: Cell Cycle Ano de publicação: 2014 Tipo de documento: Article