Your browser doesn't support javascript.
loading
Regulatory role of the cannabinoid CB2 receptor in stress-induced neuroinflammation in mice.
Zoppi, S; Madrigal, J L; Caso, J R; García-Gutiérrez, M S; Manzanares, J; Leza, J C; García-Bueno, B.
Afiliação
  • Zoppi S; Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Instituto UCM de Investigación en Neuroquímica, Madrid, Spain.
Br J Pharmacol ; 171(11): 2814-26, 2014 Jun.
Article em En | MEDLINE | ID: mdl-24467609
ABSTRACT
BACKGROUND AND

PURPOSE:

Stress exposure produces excitotoxicity and neuroinflammation, contributing to the cellular damage observed in stress-related neuropathologies. The endocannabinoids provide a homeostatic system, present in stress-responsive neural circuits. Here, we have assessed the possible regulatory role of cannabinoid CB2 receptors in stress-induced excitotoxicity and neuroinflammation. EXPERIMENTAL

APPROACH:

We used wild type (WT), transgenic overexpressing CB2 receptors (CB2xP) and CB2 receptor knockout (CB2-KO) mice exposed to immobilization and acoustic stress (2 h·day(-1) for 4 days). The CB2 receptor agonist JWH-133 was administered daily (2 mg·kg(-1), i.p.) to WT and CB2-KO animals. Glutamate uptake was measured in synaptosomes from frontal cortex; Western blots and RT-PCR were used to measure proinflammatory cytokines, enzymes and mediators in homogenates of frontal cortex. KEY

RESULTS:

Increased plasma corticosterone induced by stress was not modified by manipulating CB2 receptors. JWH-133 treatment or overexpression of CB2 receptors increased control levels of glutamate uptake, which were reduced by stress back to control levels. JWH-133 prevented the stress-induced increase in proinflammatory cytokines (TNF-α and CCL2), in NF-κB, and in NOS-2 and COX-2 and in the consequent cellular oxidative and nitrosative damage (lipid peroxidation). CB2xP mice exhibited anti-inflammatory or neuroprotective actions similar to those in JWH-133 pretreated animals. Conversely, lack of CB2 receptors (CB2-KO mice) exacerbated stress-induced neuroinflammatory responses and confirmed that effects of JWH-133 were mediated through CB2 receptors. CONCLUSIONS AND IMPLICATIONS Pharmacological manipulation of CB2 receptors is a potential therapeutic strategy for the treatment of stress-related pathologies with a neuroinflammatory component, such as depression.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Psicológico / Receptor CB2 de Canabinoide / Lobo Frontal / Inflamação Limite: Animals Idioma: En Revista: Br J Pharmacol Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Psicológico / Receptor CB2 de Canabinoide / Lobo Frontal / Inflamação Limite: Animals Idioma: En Revista: Br J Pharmacol Ano de publicação: 2014 Tipo de documento: Article