Your browser doesn't support javascript.
loading
Influence of the N terminus on the biophysical properties and pharmacology of TREK1 potassium channels.
Veale, Emma L; Al-Moubarak, Ehab; Bajaria, Naina; Omoto, Kiyoyuki; Cao, Lishuang; Tucker, Stephen J; Stevens, Edward B; Mathie, Alistair.
Afiliação
  • Veale EL; Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom (E.L.V., E.A.-M., N.B., A.M.); Pfizer Neusentis, Great Abington, Cambridge, United Kingdom (K.O., L.C., E.B.S.); and Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom (S.J.T.).
Mol Pharmacol ; 85(5): 671-81, 2014 May.
Article em En | MEDLINE | ID: mdl-24509840
ABSTRACT
TWIK-related K(+) 1 (TREK1) potassium channels are members of the two-pore domain potassium channel family and contribute to background potassium conductances in many cell types, where their activity can be regulated by a variety of physiologic and pharmacologic mediators. Fenamates such as FFA (flufenamic acid; 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid), MFA [mefenamic acid; 2-(2,3-dimethylphenyl)aminobenzoic acid], NFA [niflumic acid; 2-{[3-(trifluoromethyl)phenyl]amino}nicotinic acid], and diclofenac [2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid] and the related experimental drug BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine] enhance the activity of TREK1 currents, and we show that BL-1249 is the most potent of these compounds. Alternative translation initiation produces a shorter, N terminus truncated form of TREK1 with a much reduced open probability and a proposed increased permeability to sodium compared with the longer form. We show that both forms of TREK1 can be activated by fenamates and that a number of mutations that affect TREK1 channel gating occlude the action of fenamates but only in the longer form of TREK1. Furthermore, fenamates produce a marked enhancement of current through the shorter, truncated form of TREK1 and reveal a K(+)-selective channel, like the long form. These results provide insight into the mechanism of TREK1 channel activation by fenamates, and, given the role of TREK1 channels in pain, they suggest a novel analgesic mechanism for these compounds.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Potássio de Domínios Poros em Tandem / Fenamatos Limite: Humans Idioma: En Revista: Mol Pharmacol Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canais de Potássio de Domínios Poros em Tandem / Fenamatos Limite: Humans Idioma: En Revista: Mol Pharmacol Ano de publicação: 2014 Tipo de documento: Article