Your browser doesn't support javascript.
loading
PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium.
Bearzi, C; Gargioli, C; Baci, D; Fortunato, O; Shapira-Schweitzer, K; Kossover, O; Latronico, M V G; Seliktar, D; Condorelli, G; Rizzi, R.
Afiliação
  • Bearzi C; 1] Istituto Ricovero Cura Carattere Scientifico MultiMedica, Milan, Italy [2] Cell Biology and Neurobiology Institute, National Research Council of Italy (CNR), Rome, Italy.
  • Gargioli C; Istituto Ricovero Cura Carattere Scientifico MultiMedica, Milan, Italy.
  • Baci D; Istituto Ricovero Cura Carattere Scientifico MultiMedica, Milan, Italy.
  • Fortunato O; Istituto Ricovero Cura Carattere Scientifico MultiMedica, Milan, Italy.
  • Shapira-Schweitzer K; Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
  • Kossover O; Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
  • Latronico MV; Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
  • Seliktar D; Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
  • Condorelli G; Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
  • Rizzi R; 1] Istituto Ricovero Cura Carattere Scientifico MultiMedica, Milan, Italy [2] Cell Biology and Neurobiology Institute, National Research Council of Italy (CNR), Rome, Italy.
Cell Death Dis ; 5: e1053, 2014 Feb 13.
Article em En | MEDLINE | ID: mdl-24525729
ABSTRACT
Cell-based regenerative therapies are significantly improved by engineering allografts to express factors that increase vascularization and engraftment, such as placental growth factor (PlGF) and matrix metalloproteinase 9 (MMP9). Moreover, the seeding of therapeutic cells onto a suitable scaffold is of utmost importance for tissue regeneration. On these premises, we sought to assess the reparative potential of induced pluripotent stem (iPS) cells bioengineered to secrete PlGF or MMP9 and delivered to infarcted myocardium upon a poly(ethylene glycol)-fibrinogen scaffold. When assessing optimal stiffness of the PEG-fibrinogen (PF) scaffold, we found that the appearance of contracting cells after cardiogenic induction was accelerated on the support designed with an intermediate stiffness. Revascularization and hemodynamic parameters of infarcted mouse heart were significantly improved by injection into the infarct of this optimized PF scaffold seeded with both MiPS (iPS cells engineered to secrete MMP9) and PiPS (iPS cells engineered to secrete PlGF) cells as compared with nonengineered cells or PF alone. Importantly, allograft-derived cells and host myocardium were functionally integrated. Therefore, survival and integration of allografts in the ischemic heart can be significantly improved with the use of therapeutic cells bioengineered to secrete MMP9 and PlGF and encapsulated within an injectable PF hydrogel having an optimized stiffness.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Proteínas da Gravidez / Regeneração / Fibrinogênio / Engenharia Genética / Metaloproteinase 9 da Matriz / Engenharia Tecidual / Miócitos Cardíacos / Alicerces Teciduais / Células-Tronco Pluripotentes Induzidas Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Cell Death Dis Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Proteínas da Gravidez / Regeneração / Fibrinogênio / Engenharia Genética / Metaloproteinase 9 da Matriz / Engenharia Tecidual / Miócitos Cardíacos / Alicerces Teciduais / Células-Tronco Pluripotentes Induzidas Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Cell Death Dis Ano de publicação: 2014 Tipo de documento: Article