Your browser doesn't support javascript.
loading
Human cancer cells retain modest levels of enzymatically active matriptase only in extracellular milieu following induction of zymogen activation.
Chu, Li-Ling; Xu, Yuan; Yang, Jie-Ru; Hu, Yi-An; Chang, Hsiang-Hua; Lai, Hong-Yu; Tseng, Chun-Che; Wang, Hue-Yu; Johnson, Michael D; Wang, Jehng-Kang; Lin, Chen-Yong.
Afiliação
  • Chu LL; Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan.
  • Xu Y; Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America.
  • Yang JR; Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.
  • Hu YA; Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.
  • Chang HH; Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America; Department of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.
  • Lai HY; Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America.
  • Tseng CC; Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America; Department of Biology, Carleton College, Northfield, Minnesota, United States of America.
  • Wang HY; Department of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan.
  • Johnson MD; Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America.
  • Wang JK; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC.
  • Lin CY; Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, D.C., United States of America.
PLoS One ; 9(3): e92244, 2014.
Article em En | MEDLINE | ID: mdl-24663123
ABSTRACT
The type 2 transmembrane serine protease matriptase is broadly expressed in human carcinomas and hematological cancers. The proteolytic activity of matriptase is a potential target of drugs and imaging probes. We assessed the fate of active matriptase following the induction of matriptase zymogen activation. Exposing eight human carcinoma cells to pH 6.0 buffer induced robust matriptase zymogen activation followed by rapid inhibition of the nascent active matriptase by hepatocyte growth factor activator inhibitor (HAI)-1. Consequently, no enzymatically active matriptase was detected in these cells. Some active matriptase is, however, rapidly shed to the extracellular milieu by these carcinoma cells. The lack of cell-associated active matriptase and the shedding of active matriptase were also observed in two hematological cancer lines. Matriptase shedding is correlated closely with the induction of matriptase activation, suggesting that matriptase activation and shedding are kinetically coupled. The coupling allows a proportion of active matriptase to survive HAI-1 inhibition by rapid shedding from cell surface. Our study suggests that cellular free, active matriptase is scarce and might not be an effective target for in vivo imaging and drug development.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Serina Endopeptidases / Precursores Enzimáticos / Neoplasias Limite: Humans Idioma: En Revista: PLoS One Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Serina Endopeptidases / Precursores Enzimáticos / Neoplasias Limite: Humans Idioma: En Revista: PLoS One Ano de publicação: 2014 Tipo de documento: Article