Your browser doesn't support javascript.
loading
Distant homology modeling of LCAT and its validation through in silico targeting and in vitro and in vivo assays.
Sensi, Cristina; Simonelli, Sara; Zanotti, Ilaria; Tedeschi, Gabriella; Lusardi, Giulia; Franceschini, Guido; Calabresi, Laura; Eberini, Ivano.
Afiliação
  • Sensi C; Laboratorio di Biochimica e Biofisica Computazionale, Università degli Studi di Milano, Milano, Italia.
  • Simonelli S; Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia.
  • Zanotti I; Dipartimento di Farmacia, Università Degli Studi di Parma, Parma, Italia.
  • Tedeschi G; Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italia.
  • Lusardi G; Dipartimento di Farmacia, Università Degli Studi di Parma, Parma, Italia.
  • Franceschini G; Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia.
  • Calabresi L; Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italia.
  • Eberini I; Laboratorio di Biochimica e Biofisica Computazionale, Università degli Studi di Milano, Milano, Italia.
PLoS One ; 9(4): e95044, 2014.
Article em En | MEDLINE | ID: mdl-24736652
LCAT (lecithin:cholesterol acyltransferase) catalyzes the transacylation of a fatty acid of lecithin to cholesterol, generating a cholesteryl ester and lysolecithin. The knowledge of LCAT atomic structure and the identification of the amino acids relevant in controlling its structure and function are expected to be very helpful to understand the enzyme catalytic mechanism, as involved in HDL cholesterol metabolism. However - after an early report in the late '90 s - no recent advance has been made about LCAT three-dimensional structure. In this paper, we propose an LCAT atomistic model, built following the most up-to-date molecular modeling approaches, and exploiting newly solved crystallographic structures. LCAT shows the typical folding of the α/ß hydrolase superfamily, and its topology is characterized by a combination of α-helices covering a central 7-strand ß-sheet. LCAT presents a Ser/Asp/His catalytic triad with a peculiar geometry, which is shared with such other enzyme classes as lipases, proteases and esterases. Our proposed model was validated through different approaches. We evaluated the impact on LCAT structure of some point mutations close to the enzyme active site (Lys218Asn, Thr274Ala, Thr274Ile) and explained, at a molecular level, their phenotypic effects. Furthermore, we devised some LCAT modulators either designed through a de novo strategy or identified through a virtual high-throughput screening pipeline. The tested compounds were proven to be potent inhibitors of the enzyme activity.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Fosfatidilcolina-Esterol O-Aciltransferase Limite: Animals / Humans / Male Idioma: En Revista: PLoS One Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Moleculares / Fosfatidilcolina-Esterol O-Aciltransferase Limite: Animals / Humans / Male Idioma: En Revista: PLoS One Ano de publicação: 2014 Tipo de documento: Article