Your browser doesn't support javascript.
loading
Corneal sensory nerve activity in an experimental model of UV keratitis.
Acosta, M Carmen; Luna, Carolina; Quirce, Susana; Belmonte, Carlos; Gallar, Juana.
Afiliação
  • Acosta MC; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.
  • Luna C; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.
  • Quirce S; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.
  • Belmonte C; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain Fundación de Investigación Oftalmológica, Instituto Fernández-Vega, C/Drs. Fernández Vega, s/n, Oviedo, Spain.
  • Gallar J; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.
Invest Ophthalmol Vis Sci ; 55(6): 3403-12, 2014 May 01.
Article em En | MEDLINE | ID: mdl-24787567
ABSTRACT

PURPOSE:

To produce in guinea pigs a UV-induced keratitis, to analyze the effects of this pathology on corneal nerve activity.

METHODS:

In anesthetized animals, one eye was exposed to 254 nm UV-C radiation (500-1000 mJ/cm(2)), excised 24 to 48 hours later and superfused in vitro. Nerve impulse activity was recorded in ciliary nerve filaments or in corneal sensory terminals of intact and UV-irradiated eyes. Impulse activity in response to mechanical (von Frey hairs), chemical (98.5% CO2 gas jets), and thermal stimulation (cooling from 34°C to 20°C; heating to 50°C) was analyzed. Duration of eyelid closure and blinking and tearing rates were evaluated in control and in UV-irradiated eyes, before and after application of TRPV1, TRPA1, and TRPM8 agonists (100 µM capsaicin; 10 mM AITC, and 200 µM menthol, respectively).

RESULTS:

After irradiation, mechanical threshold of mechano-nociceptor corneo-scleral fibers was reduced (0.59 ± 0.4 vs. 0.27 ± 0.07 mN; P < 0.05) while polymodal nociceptors increased their response to chemical stimulation (1.7 ± 0.2 vs. 3.4 ± 0.5 imps/s; P < 0.05). In contrast, cold thermoreceptors showed a significantly lower ongoing activity at 34°C (8.6 ± 0.5 vs. 6.1 ± 0.9 imp/s; P < 0.05) and a reduced responsiveness to cooling pulses (peak frequency = 29.8 ± 1.3 vs. 18.9 ± 1.8 imp/s; P < 0.001). Blinking but not tearing rate was significantly higher; behavioral responses to topical capsaicin and AITC, but not to menthol were enhanced in UV-irradiated animals.

CONCLUSIONS:

Sensitization of nociceptor and depression of cold thermoreceptor activity following UV radiation appear to result from an action of inflammatory mediators on TRP channels selectively expressed by sensory nerve terminals. Changes in nerve activity possibly underlie discomfort sensations associated with corneo-conjunctival inflammation induced by UV exposure.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Termorreceptores / Raios Ultravioleta / Piscadela / Nociceptores / Córnea / Ceratite Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Invest Ophthalmol Vis Sci Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Termorreceptores / Raios Ultravioleta / Piscadela / Nociceptores / Córnea / Ceratite Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Invest Ophthalmol Vis Sci Ano de publicação: 2014 Tipo de documento: Article