Your browser doesn't support javascript.
loading
The role of hemorrhage following spinal-cord injury.
Losey, Patrick; Young, Christopher; Krimholtz, Emily; Bordet, Régis; Anthony, Daniel C.
Afiliação
  • Losey P; Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France. Electronic address: patrick.losey@merton.oxon.org.
  • Young C; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. Electronic address: chris.uct@gmail.com.
  • Krimholtz E; Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK. Electronic address: emily.krimholtz@gmail.com.
  • Bordet R; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France. Electronic address: regis.bordet@univ-lille2.fr.
  • Anthony DC; Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France. Electronic address: daniel.anthony@pharm.ox.ac.uk.
Brain Res ; 1569: 9-18, 2014 Jun 20.
Article em En | MEDLINE | ID: mdl-24792308
ABSTRACT
Spinal-cord injury is characterized by primary damage as a direct consequence of mechanical insult, and secondary damage that is partly due to the acute inflammatory response. The extent of any hemorrhage within the injured cord is also known to be associated with the formation of intraparenchymal cavities and has been anecdotally linked to secondary damage. This study was designed to examine the contribution of blood components to the outcome of spinal-cord injury. We stereotaxically microinjected collagenase, which causes localized bleeding, into the spinal cord to model the hemorrhage associated with spinal cord injury in the absence of significant mechanical trauma. Tissue damage was observed at the collagenase injection site over time, and was associated with localized disruption of the blood-spinal-cord barrier, neuronal cell death, and the recruitment of leukocytes. The magnitude of the bleed was related to neutrophil mobilization. Interestingly, the collagenase-induced injury also provoked extended axonal damage. With this model, the down-stream effects of hemorrhage are easily discernible, and the impact of treatment strategies for spinal-cord injury on hemorrhage-related injury can be evaluated.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismos da Medula Espinal / Hemorragia Limite: Animals Idioma: En Revista: Brain Res Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismos da Medula Espinal / Hemorragia Limite: Animals Idioma: En Revista: Brain Res Ano de publicação: 2014 Tipo de documento: Article