Your browser doesn't support javascript.
loading
Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo.
Luckanagul, Jittima Amie; Lee, L Andrew; You, Shaojin; Yang, Xiaoming; Wang, Qian.
Afiliação
  • Luckanagul JA; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina.
J Biomed Mater Res A ; 103(3): 887-95, 2015 Mar.
Article em En | MEDLINE | ID: mdl-24829052
Viruses are no longer recognized purely for being ubiquitous pathogens, but have served as building blocks for material chemistry and nanotechnology. Thousands of coat protein subunits of a viral particle can be modified chemically and/or genetically. We have previously shown that the three-dimensional porous hydrogels can easily be functionalized by Tobacco mosaic virus (TMV), a rod-like plant virus, using its mutant, RGD-TMV. RGD-TMV hosted bioadhesive peptide (RGD) in the hydrogel, which was shown to enhance cell attachment and promote osteogenic differentiation of cultured stem cell. To translate this technology to potential clinical applications, we sought to study the biocompatibility of the hydrogel. In this paper, the hydrogels were implanted in vivo and assessed for their immunogenicity, toxicity, and biodegradability. Immune response for TMV substantially decreased when incorporated in the hydrogel implants. The implanted TMV hydrogels exhibited no apparent toxicity and were degradable in mice. The results highlighted the feasibility of using TMV incorporated hydrogels as scaffolding materials for regenerative medicine in terms of biocompatibility and biodegradability.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Materiais Biocompatíveis / Hidrogéis / Engenharia Tecidual / Proteínas do Capsídeo / Alicerces Teciduais Limite: Animals Idioma: En Revista: J Biomed Mater Res A Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Materiais Biocompatíveis / Hidrogéis / Engenharia Tecidual / Proteínas do Capsídeo / Alicerces Teciduais Limite: Animals Idioma: En Revista: J Biomed Mater Res A Ano de publicação: 2015 Tipo de documento: Article