Your browser doesn't support javascript.
loading
Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: results from a multicenter Spanish study.
Briceño, Javier; Cruz-Ramírez, Manuel; Prieto, Martín; Navasa, Miguel; Ortiz de Urbina, Jorge; Orti, Rafael; Gómez-Bravo, Miguel-Ángel; Otero, Alejandra; Varo, Evaristo; Tomé, Santiago; Clemente, Gerardo; Bañares, Rafael; Bárcena, Rafael; Cuervas-Mons, Valentín; Solórzano, Guillermo; Vinaixa, Carmen; Rubín, Angel; Colmenero, Jordi; Valdivieso, Andrés; Ciria, Rubén; Hervás-Martínez, César; de la Mata, Manuel.
Afiliação
  • Briceño J; Liver Transplantation Unit, CIBERehd, IMIBIC, Hospital Reina Sofía, Córdoba, Spain. Electronic address: javibriceno@hotmail.com.
  • Cruz-Ramírez M; Department of Computer Science and Numerical Analysis, University of Córdoba, Spain.
  • Prieto M; Liver Transplantation Unit, CIBERehd, Hospital La Fe, Valencia, Spain.
  • Navasa M; Liver Transplantation Unit, Hospital Clínic, Barcelona, Spain.
  • Ortiz de Urbina J; Liver Transplantation Unit, Hospital de Cruces, Bilbao, Spain.
  • Orti R; Liver Transplantation Unit, CIBERehd, IMIBIC, Hospital Reina Sofía, Córdoba, Spain.
  • Gómez-Bravo MÁ; Liver Transplantation Unit, Hospital Virgen del Rocío, Sevilla, Spain.
  • Otero A; Liver Transplantation Unit, Hospital Juan Canalejo, A Coruña, Spain.
  • Varo E; Liver Transplantation Unit, Hospital Clínico Universitario, Santiago de Compostela, Spain.
  • Tomé S; Liver Transplantation Unit, Hospital Clínico Universitario, Santiago de Compostela, Spain.
  • Clemente G; Liver Transplantation Unit, Hospital Gregorio Marañón, Madrid, Spain.
  • Bañares R; Liver Transplantation Unit, Hospital Gregorio Marañón, Madrid, Spain.
  • Bárcena R; Liver Transplantation Unit, Hospital Ramón y Cajal, Madrid, Spain.
  • Cuervas-Mons V; Liver Transplantation Unit, Hospital Puerta de Hierro, Madrid, Spain.
  • Solórzano G; Liver Transplantation Unit, Hospital Infanta Cristina, Badajoz, Spain.
  • Vinaixa C; Liver Transplantation Unit, CIBERehd, Hospital La Fe, Valencia, Spain.
  • Rubín A; Liver Transplantation Unit, CIBERehd, Hospital La Fe, Valencia, Spain.
  • Colmenero J; Liver Transplantation Unit, Hospital Clínic, Barcelona, Spain.
  • Valdivieso A; Liver Transplantation Unit, Hospital de Cruces, Bilbao, Spain.
  • Ciria R; Liver Transplantation Unit, CIBERehd, IMIBIC, Hospital Reina Sofía, Córdoba, Spain.
  • Hervás-Martínez C; Department of Computer Science and Numerical Analysis, University of Córdoba, Spain.
  • de la Mata M; Liver Transplantation Unit, CIBERehd, IMIBIC, Hospital Reina Sofía, Córdoba, Spain.
J Hepatol ; 61(5): 1020-8, 2014 Nov.
Article em En | MEDLINE | ID: mdl-24905493
BACKGROUND & AIMS: There is an increasing discrepancy between the number of potential liver graft recipients and the number of organs available. Organ allocation should follow the concept of benefit of survival, avoiding human-innate subjectivity. The aim of this study is to use artificial-neural-networks (ANNs) for donor-recipient (D-R) matching in liver transplantation (LT) and to compare its accuracy with validated scores (MELD, D-MELD, DRI, P-SOFT, SOFT, and BAR) of graft survival. METHODS: 64 donor and recipient variables from a set of 1003 LTs from a multicenter study including 11 Spanish centres were included. For each D-R pair, common statistics (simple and multiple regression models) and ANN formulae for two non-complementary probability-models of 3-month graft-survival and -loss were calculated: a positive-survival (NN-CCR) and a negative-loss (NN-MS) model. The NN models were obtained by using the Neural Net Evolutionary Programming (NNEP) algorithm. Additionally, receiver-operating-curves (ROC) were performed to validate ANNs against other scores. RESULTS: Optimal results for NN-CCR and NN-MS models were obtained, with the best performance in predicting the probability of graft-survival (90.79%) and -loss (71.42%) for each D-R pair, significantly improving results from multiple regressions. ROC curves for 3-months graft-survival and -loss predictions were significantly more accurate for ANN than for other scores in both NN-CCR (AUROC-ANN=0.80 vs. -MELD=0.50; -D-MELD=0.54; -P-SOFT=0.54; -SOFT=0.55; -BAR=0.67 and -DRI=0.42) and NN-MS (AUROC-ANN=0.82 vs. -MELD=0.41; -D-MELD=0.47; -P-SOFT=0.43; -SOFT=0.57, -BAR=0.61 and -DRI=0.48). CONCLUSIONS: ANNs may be considered a powerful decision-making technology for this dataset, optimizing the principles of justice, efficiency and equity. This may be a useful tool for predicting the 3-month outcome and a potential research area for future D-R matching models.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Doadores de Tecidos / Inteligência Artificial / Transplante de Fígado Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Aspecto: Equity_inequality Limite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged País/Região como assunto: Europa Idioma: En Revista: J Hepatol Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 Base de dados: MEDLINE Assunto principal: Doadores de Tecidos / Inteligência Artificial / Transplante de Fígado Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Aspecto: Equity_inequality Limite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged País/Região como assunto: Europa Idioma: En Revista: J Hepatol Ano de publicação: 2014 Tipo de documento: Article