Your browser doesn't support javascript.
loading
1,25-Dihydroxyvitamin D3 prevents bone loss of the secondary spongiosa in arthritic rats by an increase of bone formation and mineralization and inhibition of bone resorption.
Oelzner, Peter; Petrow, Peter K; Wolf, Gunter; Bräuer, Rolf.
Afiliação
  • Oelzner P; Department of Internal Medicine III, University Hospital of Jena, Erlanger Allee 101, 07740 Jena, Germany. peter.oelzner@med.uni-jena.de.
BMC Musculoskelet Disord ; 15: 345, 2014 Oct 14.
Article em En | MEDLINE | ID: mdl-25315028
BACKGROUND: Active vitamin D metabolites have been shown to have protective effects in experimental arthritis especially when used as preventive treatment. However, because the direct effects of 1,25-dihydroxyvitamin D3 (1,25(OH) 2D3) on bone formation and resorption are very complex, the net effect of 1,25(OH)2D3 on histomorphometric parameters of bone turnover and mineralisation should be investigated. Therefore, we examined the influence of 1,25(OH)2D3 therapy on arthritis-induced alterations of periarticular and axial bone as well as disease activity, inflammation and joint destruction in antigen-induced arthritis (AIA) of the rat. METHODS: AIA was induced in 20 eight-week-old female Wistar rats. 10 rats without arthritis were used as healthy controls. AIA rats received 1,25(OH)2D3 (0.2 µg/kg/day, i.p., n = 10) or vehicle (n = 10) at regular intervals for 28 consecutive days beginning 3 days before arthritis induction. Bone structure of the secondary spongiosa of the periarticular and axial bone was analyzed using histomorphometry. Parameters of mineralization were investigated using tetracycline labelling. Clinical disease activity, inflammation and joint destruction were measured by joint swelling and histological investigation, respectively. RESULTS: AIA led to significant periarticular bone loss. 1,25(OH)2D3 treatment resulted in a highly significant increase in trabecular bone volume and bone formation rate in comparison to both vehicle-treated AIA and healthy controls at periarticular (p < 0.01 and p < 0.001, respectively) and axial bone (p < 0.001 and p < 0.001, respectively). In addition, bone resorption was reduced by 1,25(OH)2D3 at the axial bone (p < 0.05 vs. vehicle-treated AIA). Joint swelling as well as histological signs of inflammation and joint destruction were not influenced by 1,25(OH)2D3. CONCLUSIONS: The results of the study indicate a marked osteoanabolic effect of 1,25(OH)2D3 presumably due to a substantial increase in mineralization. Thus, 1,25(OH)2D3 may be an effective osteoanabolic treatment principle to antagonize the inflammation-associated suppression of bone formation in rheumatoid arthritis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Artrite Experimental / Vitamina D / Reabsorção Óssea / Calcificação Fisiológica / Corno Dorsal da Medula Espinal Limite: Animals Idioma: En Revista: BMC Musculoskelet Disord Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteogênese / Artrite Experimental / Vitamina D / Reabsorção Óssea / Calcificação Fisiológica / Corno Dorsal da Medula Espinal Limite: Animals Idioma: En Revista: BMC Musculoskelet Disord Ano de publicação: 2014 Tipo de documento: Article