Your browser doesn't support javascript.
loading
Evidence against a bacterial endotoxin masking effect in biologic drug products by limulus amebocyte lysate detection.
Bolden, Jay S; Claerbout, Mark E; Miner, Matthew K; Murphy, Marie A; Smith, Kelly R; Warburton, Rob E.
Afiliação
  • Bolden JS; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN bolden_jay@lilly.com.
  • Claerbout ME; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN.
  • Miner MK; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN.
  • Murphy MA; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN.
  • Smith KR; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN.
  • Warburton RE; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN.
PDA J Pharm Sci Technol ; 68(5): 472-7, 2014.
Article em En | MEDLINE | ID: mdl-25336418
The inability to detect endotoxin using compendia methods is a potential safety concern for patients due to the lack of endotoxin removal capabilities at the fill-finish stage in typical aseptic biologic drug product manufacturing. We have successfully demonstrated endotoxin challenge study recovery methodology using mammalian cell-produced biologic drug products and drug substances in citrate, histidine, phosphate, and sodium acetate buffer formulations containing polysorbate, challenged with an endotoxin analyte, for up to 6 months of storage. Successful recovery was similarly demonstrated for a preserved, peptide-containing drug product formulation. To isolate a potential masking-or low-endotoxin recovery-source, additional studies were performed to evaluate factors including product manufacturing contact surfaces, drug product matrix with and without polysorbate, individual matrix components, protein concentration, reagent suppliers, an orthogonal test method, and storage conditions. In all cases, acceptable recoveries were observed. Bacterial endotoxin is known to be chemically stable at physiological conditions. Purified endotoxin in aqueous conditions is likely to self-aggregate or bind to surfaces. Neither the nature of, nor the storage conditions of, the studied formulation matrices were shown experimentally to render the challenge endotoxin biologically inactive. The results highlight the importance of appropriate study design in assessing the recovery of endotoxins. LAY ABSTRACT: Bacterial endotoxin is a Gram-negative bacterial cell wall component that is harmful to humans at threshold concentrations, and it is not expected to be in aseptically-produced pharmaceutical medicines. It has been suggested that endotoxin cannot be detected over time in certain biopharmaceutical drug product formulations containing citrate, phosphate, and polysorbate components via an unknown masking mechanism. We have generated and present data here that indicate that endotoxin can be recovered in a variety of matrices, and under various experimental conditions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Biológicos / Biofarmácia / Lipopolissacarídeos / Contaminação de Medicamentos / Técnicas Bacteriológicas / Tecnologia Farmacêutica / Teste do Limulus Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: PDA J Pharm Sci Technol Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Biológicos / Biofarmácia / Lipopolissacarídeos / Contaminação de Medicamentos / Técnicas Bacteriológicas / Tecnologia Farmacêutica / Teste do Limulus Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: PDA J Pharm Sci Technol Ano de publicação: 2014 Tipo de documento: Article