Your browser doesn't support javascript.
loading
miR-21 improves the neurological outcome after traumatic brain injury in rats.
Ge, Xin-Tong; Lei, Ping; Wang, Hai-Chen; Zhang, An-Ling; Han, Zhao-Li; Chen, Xin; Li, Sheng-Hui; Jiang, Rong-Cai; Kang, Chun-Sheng; Zhang, Jian-Ning.
Afiliação
  • Ge XT; 1] Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China [2] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin,
  • Lei P; 1] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, Tianjin, China [2] Department of Neurosurgery, Tianjin Medical University Gener
  • Wang HC; Department of Neurology, Duke University School of Medicine, Durham, North Carolina, U.S.A.
  • Zhang AL; 1] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, Tianjin, China [2] Department of Neurosurgery, Tianjin Medical University Gener
  • Han ZL; 1] Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China [2] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin,
  • Chen X; 1] Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China [2] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin,
  • Li SH; 1] Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China [2] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin,
  • Jiang RC; 1] Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China [2] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin,
  • Kang CS; 1] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, Tianjin, China [2] Department of Neurosurgery, Tianjin Medical University Gener
  • Zhang JN; 1] Laboratory of Neuro-Trauma, Tianjin Neurological Institute, Tianjin, China [2] Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin,
Sci Rep ; 4: 6718, 2014 Oct 24.
Article em En | MEDLINE | ID: mdl-25342226
The expression levels of microRNAs (miRNAs) including miR-21, have been reported to change in response to traumatic brain injury (TBI), suggesting that they may influence the pathophysiological process in brain injury. To analyze the potential effect of miR-21 on neurological function after TBI, we employed the fluid percussion injury rat model and manipulated the expression level of miR-21 in brain using intracerebroventricular infusion of miR-21 agomir or antagomir. We found that upregulation of miR-21 level in brain conferred a better neurological outcome after TBI by improving long-term neurological function, alleviating brain edema and decreasing lesion volume. To further investigate the mechanism underlying this protective effect, we evaluated the impact of miR-21 on apoptosis and angiogenesis in brain after TBI. We found that miR-21 inhibited apoptosis and promoted angiogenesis through regulating the expression of apoptosis- and angiogenesis-related molecules. In addition, the expression of PTEN, a miR-21 target gene, was inhibited and Akt signaling was activated in the procedure. Taken together, these data indicate that miR-21 could be a potential therapeutic target for interventions after TBI.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lesões Encefálicas / MicroRNAs Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Lesões Encefálicas / MicroRNAs Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Sci Rep Ano de publicação: 2014 Tipo de documento: Article