Your browser doesn't support javascript.
loading
Optimise inlet condition and design parameters of a new sewer overflow screening device using numerical model.
Aziz, M A; Imteaz, M A; Huda, Nazmul; Naser, J.
Afiliação
  • Aziz MA; Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia E-mail: aaziz@swin.edu.au.
  • Imteaz MA; Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia E-mail: aaziz@swin.edu.au.
  • Huda N; Department of Engineering, Macquarie University, NSW 2109, Australia.
  • Naser J; Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, Australia E-mail: aaziz@swin.edu.au.
Water Sci Technol ; 70(11): 1880-7, 2014.
Article em En | MEDLINE | ID: mdl-25500477
ABSTRACT
After heavy rainfall, sewer overflow spills to receiving water bodies cause serious concern for the environment, aesthetics and public health. To overcome these problems this study investigated a new self-cleansing sewer overflow screening device. The device has a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants. To design an efficient screening device a numerical computational fluid dynamic (CFD) model was used. A plausibility check of the CFD model was done using a one-dimensional analytical model. Results showed that an inlet parallel to the weir ensured better self-cleansing than an inlet perpendicular to the weir. Perforations should be at the bottom of the weir to get increased velocity and shear stress to create a favourable self-cleaning effect of the screening device. Increasing inlet length from 0.3 to 1.5 m reduced wave reflection up to 10%, which increased flow uniformity downstream and improved self-cleansing effect. The orientation of the ogee weir with the rectangular tank was found most uniform with a 13 (horizontalvertical) slope. These results will help to maximise functional efficiency of the new sewer overflow screening device. Otherwise it would be too expensive to alter after installation and at times difficult to customise accordingly to existing urban drainage systems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Engenharia Sanitária / Modelos Teóricos Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: Water Sci Technol Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 2_ODS3 Base de dados: MEDLINE Assunto principal: Engenharia Sanitária / Modelos Teóricos Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: Water Sci Technol Ano de publicação: 2014 Tipo de documento: Article