Your browser doesn't support javascript.
loading
A decoy-free approach to the identification of peptides.
Gonnelli, Giulia; Stock, Michiel; Verwaeren, Jan; Maddelein, Davy; De Baets, Bernard; Martens, Lennart; Degroeve, Sven.
Afiliação
  • Gonnelli G; †Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
  • Stock M; ‡Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
  • Verwaeren J; §Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
  • Maddelein D; §Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
  • De Baets B; †Department of Medical Protein Research, VIB, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
  • Martens L; ‡Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
  • Degroeve S; §Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
J Proteome Res ; 14(4): 1792-8, 2015 Apr 03.
Article em En | MEDLINE | ID: mdl-25714903
A growing number of proteogenomics and metaproteomics studies indicate potential limitations of the application of the "decoy" database paradigm used to separate correct peptide identifications from incorrect ones in traditional shotgun proteomics. We therefore propose a binary classifier called Nokoi that allows fast yet reliable decoy-free separation of correct from incorrect peptide-to-spectrum matches (PSMs). Nokoi was trained on a very large collection of heterogeneous data using ranks supplied by the Mascot search engine to label correct and incorrect PSMs. We show that Nokoi outperforms Mascot and achieves a performance very close to that of Percolator at substantially higher processing speeds.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Algoritmos / Software / Proteômica Tipo de estudo: Diagnostic_studies / Risk_factors_studies Idioma: En Revista: J Proteome Res Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Algoritmos / Software / Proteômica Tipo de estudo: Diagnostic_studies / Risk_factors_studies Idioma: En Revista: J Proteome Res Ano de publicação: 2015 Tipo de documento: Article