Your browser doesn't support javascript.
loading
Cardiac resynchronization therapy restores sympathovagal balance in the failing heart by differential remodeling of cholinergic signaling.
DeMazumder, Deeptankar; Kass, David A; O'Rourke, Brian; Tomaselli, Gordon F.
Afiliação
  • DeMazumder D; From the Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD.
  • Kass DA; From the Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD.
  • O'Rourke B; From the Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD.
  • Tomaselli GF; From the Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD. gtomasel@jhmi.edu.
Circ Res ; 116(10): 1691-9, 2015 May 08.
Article em En | MEDLINE | ID: mdl-25733594
ABSTRACT
RATIONALE Cardiac resynchronization therapy (CRT) is the only heart failure (HF) therapy documented to improve left ventricular function and reduce mortality. The underlying mechanisms are incompletely understood. Although ß-adrenergic signaling has been studied extensively, the effect of CRT on cholinergic signaling is unexplored.

OBJECTIVE:

We hypothesized that remodeling of cholinergic signaling plays an important role in the aberrant calcium signaling and depressed contractile and ß-adrenergic responsiveness in dyssynchronous HF that are restored by CRT. METHODS AND

RESULTS:

Canine tachypaced dyssynchronous HF and CRT models were generated to interrogate responses specific to dyssynchronous versus resynchronized ventricular contraction during hemodynamic decompensation. Echocardiographic, electrocardiographic, and invasive hemodynamic data were collected from normal controls, dyssynchronous HF and CRT models. Left ventricular tissue was used for biochemical analyses and functional measurements (calcium transient, sarcomere shortening) from isolated myocytes (n=42-104 myocytes per model; 6-9 hearts per model). Human left ventricular myocardium was obtained for biochemical analyses from explanted failing (n=18) and nonfailing (n=7) hearts. The M2 subtype of muscarinic acetylcholine receptors was upregulated in human and canine HF compared with nonfailing controls. CRT attenuated the increased M2 subtype of muscarinic acetylcholine receptor expression and Gαi coupling and enhanced M3 subtype of muscarinic acetylcholine receptor expression in association with enhanced calcium cycling, sarcomere shortening, and ß-adrenergic responsiveness. Despite model-dependent remodeling, cholinergic stimulation completely abolished isoproterenol-induced triggered activity in both dyssynchronous HF and CRT myocytes.

CONCLUSIONS:

Remodeling of cholinergic signaling is a critical pathological component of human and canine HF. Differential remodeling of cholinergic signaling represents a novel mechanism for enhancing sympathovagal balance with CRT and may identify new targets for treatment of systolic HF.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Sistema Nervoso Simpático / Nervo Vago / Acetilcolina / Transmissão Sináptica / Disfunção Ventricular Esquerda / Terapia de Ressincronização Cardíaca / Coração / Insuficiência Cardíaca Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Circ Res Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Sistema Nervoso Simpático / Nervo Vago / Acetilcolina / Transmissão Sináptica / Disfunção Ventricular Esquerda / Terapia de Ressincronização Cardíaca / Coração / Insuficiência Cardíaca Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Circ Res Ano de publicação: 2015 Tipo de documento: Article