Your browser doesn't support javascript.
loading
Synergistic Induction of Potential Warburg Effect in Zebrafish Hepatocellular Carcinoma by Co-Transgenic Expression of Myc and xmrk Oncogenes.
Li, Zhen; Zheng, Weiling; Li, Hankun; Li, Caixia; Gong, Zhiyuan.
Afiliação
  • Li Z; Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
  • Zheng W; Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
  • Li H; Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
  • Li C; Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
  • Gong Z; Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore.
PLoS One ; 10(7): e0132319, 2015.
Article em En | MEDLINE | ID: mdl-26147004
Previously we have generated inducible liver tumor models by transgenic expression of Myc or xmrk (activated EGFR homolog) oncogenes in zebrafish. To investigate the interaction of the two oncogenes, we crossed the two transgenic lines and observed more severe and faster hepatocarcinogenesis in Myc/xmrk double transgenic zebrafish than either single transgenic fish. RNA-Seq analyses revealed distinct changes in many molecular pathways among the three types of liver tumors. In particular, we found dramatic alteration of cancer metabolism based on the uniquely enriched pathways in the Myc/xmrk tumors. Critical glycolytic genes including hk2, pkm and ldha were significantly up-regulated in Myc/xmrk tumors but not in either single oncogene-induced tumors, suggesting a potential Warburg effect. In RT-qPCR analyses, the specific pkm2 isoformin Warburg effect was found to be highly enriched in the Myc/xmrk tumors but not in Myc or xmrk tumors, consistent with the observations in many human cancers with Warburg effect. Moreover, the splicing factor genes (hnrnpa1, ptbp1a, ptbp1b and sfrs3b) responsible for generating the pkm isoform were also greatly up-regulated in the Myc/xmrk tumors. As Pkm2 isoform is generally inactive and causes incomplete glycolysis to favor anabolism and tumor growth, by treatment with a Pkm2-specific activator, TEPP-46, we further demonstrated that activation of Pkm2 suppressed the growth of oncogenic liver as well as proliferation of liver cells. Collectively, our Myc/xmrk zebrafish model suggests synergetic effect of EGFR and MYC in triggering Warburg effect in the HCC formation and may provide a promising in vivo model for Warburg effect.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Proto-Oncogênicas c-myc / Receptores Proteína Tirosina Quinases / Carcinoma Hepatocelular / Proteínas de Peixes / Neoplasias Hepáticas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS One Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Proto-Oncogênicas c-myc / Receptores Proteína Tirosina Quinases / Carcinoma Hepatocelular / Proteínas de Peixes / Neoplasias Hepáticas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS One Ano de publicação: 2015 Tipo de documento: Article