Your browser doesn't support javascript.
loading
Differential Regulation of ERK1/2 and mTORC1 Through T1R1/T1R3 in MIN6 Cells.
Wauson, Eric M; Guerra, Marcy L; Dyachok, Julia; McGlynn, Kathleen; Giles, Jennifer; Ross, Elliott M; Cobb, Melanie H.
Afiliação
  • Wauson EM; Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines,
  • Guerra ML; Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines,
  • Dyachok J; Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines,
  • McGlynn K; Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines,
  • Giles J; Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines,
  • Ross EM; Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines,
  • Cobb MH; Department of Pharmacology (E.M.W., M.L.G., J.D., K.M., E.M.R., M.H.C.) and the Green Center for Systems Biology (J.D., E.M.R.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041; and Department of Physiology and Pharmacology (E.M.W., J.G.), Des Moines University, Des Moines,
Mol Endocrinol ; 29(8): 1114-22, 2015 Aug.
Article em En | MEDLINE | ID: mdl-26168033
ABSTRACT
The MAPKs ERK1/2 respond to nutrients and other insulin secretagogues in pancreatic ß-cells and mediate nutrient-dependent insulin gene transcription. Nutrients also stimulate the mechanistic target of rapamycin complex 1 (mTORC1) to regulate protein synthesis. We showed previously that activation of both ERK1/2 and mTORC1 in the MIN6 pancreatic ß-cell-derived line by extracellular amino acids (AAs) is at least in part mediated by the heterodimeric T1R1/T1R3, a G protein-coupled receptor. We show here that AAs differentially activate these two signaling pathways in MIN6 cells. Pretreatment with pertussis toxin did not prevent the activation of either ERK1/2 or mTORC1 by AAs, indicating that G(I) is not central to either pathway. Although glucagon-like peptide 1, an agonist for a G(s-)coupled receptor, activated ERK1/2 well and mTORC1 to a small extent, AAs had no effect on cytosolic cAMP accumulation. Ca(2+) entry is required for ERK1/2 activation by AAs but is dispensable for AA activation of mTORC1. Pretreatment with UBO-QIC, a selective G(q) inhibitor, reduced the activation of ERK1/2 but had little effect on the activation of mTORC1 by AAs, suggesting a differential requirement for G(q). Inhibition of G(12/13) by the overexpression of the regulator of G protein signaling domain of p115 ρ-guanine nucleotide exchange factor had no effect on mTORC1 activation by AAs, suggesting that these G proteins are also not involved. We conclude that AAs regulate ERK1/2 and mTORC1 through distinct signaling pathways.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Proteína Quinase 1 Ativada por Mitógeno / Receptores Acoplados a Proteínas G / Complexos Multiproteicos / Proteína Quinase 3 Ativada por Mitógeno / Serina-Treonina Quinases TOR / Aminoácidos Limite: Animals / Humans Idioma: En Revista: Mol Endocrinol Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Proteína Quinase 1 Ativada por Mitógeno / Receptores Acoplados a Proteínas G / Complexos Multiproteicos / Proteína Quinase 3 Ativada por Mitógeno / Serina-Treonina Quinases TOR / Aminoácidos Limite: Animals / Humans Idioma: En Revista: Mol Endocrinol Ano de publicação: 2015 Tipo de documento: Article