Interacting domains in the epithelial sodium channel that mediate proteolytic activation.
Channels (Austin)
; 9(5): 281-90, 2015.
Article
em En
| MEDLINE
| ID: mdl-26218672
Epithelial Sodium Channel (ENaC) proteolysis at sites in the extracellular loop of the α and γ subunits leads to marked activation. The mechanism of this effect remains debated, as well as the role of the N- and C-terminal fragments of these subunits created by cleavage. We introduced cysteines at sites bracketing upstream and downstream the cleavage regions in α and γ ENaC to examine the role of these fragments in the activated channel. Using thiol modifying reagents, as well as examining the effects of cleavage by exogenous proteases we constructed a functional model that determines the potential interactions of the termini near the cleavage regions. We report that the N-terminal fragments of both α and γ ENaC interact with the channel complex; with interactions between the N-terminal γ and the C-terminal α fragments being the most critical to channel function and activation by exogenous cleavage by subtilisin. Positive charge modification at a.a.135 in the N-terminal fragment of γ exhibited the largest inhibition of channel function. This region was found to interact with the C-terminal α fragment between a.a. 205 and 221; a tract which was previously identified to be the site of subtilisin's action. These data provide the first evidence for the functional channel rearrangement caused by proteolysis of the α and γ subunit and indicate that the untethered N-terminal fragments of these subunits interact with the channel complex.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Ativação do Canal Iônico
/
Canais Epiteliais de Sódio
/
Proteólise
Limite:
Animals
Idioma:
En
Revista:
Channels (Austin)
Ano de publicação:
2015
Tipo de documento:
Article