Your browser doesn't support javascript.
loading
A permutation approach for selecting the penalty parameter in penalized model selection.
Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B.
Afiliação
  • Sabourin JA; Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, U.S.A.
  • Valdar W; Genometrics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, U.S.A.
  • Nobel AB; Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, U.S.A.
Biometrics ; 71(4): 1185-94, 2015 Dec.
Article em En | MEDLINE | ID: mdl-26243050
We describe a simple, computationally efficient, permutation-based procedure for selecting the penalty parameter in LASSO-penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), scaled sparse linear regression, and a selection method based on recently developed testing procedures for the LASSO.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Female / Humans Idioma: En Revista: Biometrics Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Animals / Female / Humans Idioma: En Revista: Biometrics Ano de publicação: 2015 Tipo de documento: Article