Massive Dirac Fermion Observed in Lanthanide-Doped Topological Insulator Thin Films.
Sci Rep
; 5: 15767, 2015 Oct 27.
Article
em En
| MEDLINE
| ID: mdl-26503435
The breaking of time reversal symmetry (TRS) in three-dimensional (3D) topological insulators (TIs), and thus the opening of a 'Dirac-mass gap' in the linearly dispersed Dirac surface state, is a prerequisite for unlocking exotic physical states. Introducing ferromagnetic long-range order by transition metal doping has been shown to break TRS. Here, we present the study of lanthanide (Ln) doped Bi2Te3, where the magnetic doping with high-moment lanthanides promises large energy gaps. Using molecular beam epitaxy, single-crystalline, rhombohedral thin films with Ln concentrations of up to ~35%, substituting on Bi sites, were achieved for Dy, Gd, and Ho doping. Angle-resolved photoemission spectroscopy shows the characteristic Dirac cone for Gd and Ho doping. In contrast, for Dy doping above a critical doping concentration, a gap opening is observed via the decreased spectral intensity at the Dirac point, indicating a topological quantum phase transition persisting up to room-temperature.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Sci Rep
Ano de publicação:
2015
Tipo de documento:
Article