Your browser doesn't support javascript.
loading
Facet-controlled facilitation of PbS nanoarchitectures by understanding nanocrystal growth.
Loc, Welley Siu; Quan, Zewei; Lin, Cuikun; Pan, Jinfong; Wang, Yuxuan; Yang, Kaikun; Jian, Wen-Bin; Zhao, Bo; Wang, Howard; Fang, Jiye.
Afiliação
  • Loc WS; Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, USA. jfang@binghamton.edu.
Nanoscale ; 7(45): 19047-52, 2015 Dec 07.
Article em En | MEDLINE | ID: mdl-26514694
ABSTRACT
Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2015 Tipo de documento: Article