How Y-Family DNA polymerase IV is more accurate than Dpo4 at dCTP insertion opposite an N2-dG adduct of benzo[a]pyrene.
DNA Repair (Amst)
; 35: 144-53, 2015 Nov.
Article
em En
| MEDLINE
| ID: mdl-26523515
To bypass DNA damage, cells have Y-Family DNA polymerases (DNAPs). One Y-Family-class includes DNAP κ and DNAP IV, which accurately insert dCTP opposite N(2)-dG adducts, including from the carcinogen benzo[a]pyrene (BP). Another class includes DNAP η and DNAP V, which insert accurately opposite UV-damage, but inaccurately opposite BP-N(2)-dG. To investigate structural differences between Y-Family-classes, regions are swapped between DNAP IV (a κ/IV-class-member) and Dpo4 (a η/V-class-member); the kinetic consequences are evaluated via primer-extension studies with a BP-N(2)-dG-containing template. Four key structural elements are revealed. (1) Y-Family DNAPs have discreet non-covalent contacts between their little finger-domain (LF-Domain) and their catalytic core-domain (CC-Domain), which we call "non-covalent bridges" (NCBs). Arg37 and Arg38 in DNAP IV's CC-Domain near the active site form a non-covalent bridge (AS-NCB) by interacting with Glu251 and Asp252, respectively, in DNAP IV's LF-Domain. Without these interactions dATP/dGTP/dTTP misinsertions increase. DNAP IV's AS-NCB suppresses misinsertions better than Dpo4's equivalent AS-NCB. (2) DNAP IV also suppresses dATP/dGTP/dTTP misinsertions via a second non-covalent bridge, which is â¼8Å from the active site (Distal-NCB). Dpo4 has no Distal-NCB, rendering it inferior at dATP/dGTP/dTTP suppression. (3) dCTP insertion is facilitated by the larger minor groove opening near the active site in DNAP IV versus Dpo4, which is sensible given that Watson/Crick-like [dCTP:BP-N(2)-dG] pairing requires the BP-moiety to be in the minor groove. (4) Compared to Dpo4, DNAP IV has a smaller major groove opening, which suppresses dGTP misinsertion, implying BP-N(2)-dG bulk in the major groove during Hoogsteen syn-adduct-dG:dGTP pairing. In summary, DNAP IV has a large minor groove opening to enhance dCTP insertion, a plugged major groove opening to suppress dGTP misinsertion, and two non-covalent bridges (near and distal to the active site) to suppress dATP/dGTP/dTTP misinsertions; collectively these four structural features enhance DNAP IV's dNTP insertion fidelity opposite a BP-N(2)-dG adduct compared to Dpo4.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Contexto em Saúde:
3_ND
Base de dados:
MEDLINE
Assunto principal:
DNA Polimerase beta
/
Proteínas de Escherichia coli
/
Nucleotídeos de Desoxicitosina
Idioma:
En
Revista:
DNA Repair (Amst)
Ano de publicação:
2015
Tipo de documento:
Article