Your browser doesn't support javascript.
loading
LiNi(0.5)Mn(1.5)O4 high-voltage cathode coated with Li4Ti5O12: a hard X-ray photoelectron spectroscopy (HAXPES) study.
Sachs, Malte; Gellert, Michael; Chen, Min; Drescher, Hans-Jörg; Kachel, Stefan Renato; Zhou, Han; Zugermeier, Malte; Gorgoi, Mihaela; Roling, Bernhard; Gottfried, J Michael.
Afiliação
  • Sachs M; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
  • Gellert M; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
  • Chen M; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
  • Drescher HJ; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
  • Kachel SR; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
  • Zhou H; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
  • Zugermeier M; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
  • Gorgoi M; Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
  • Roling B; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
  • Gottfried JM; Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany. michael.gottfried@chemie.uni-marburg.de.
Phys Chem Chem Phys ; 17(47): 31790-800, 2015 Dec 21.
Article em En | MEDLINE | ID: mdl-26563554
ABSTRACT
A Li4Ti5O12 (LTO) film was coated as buffer layer onto a LiNi0.5Mn1.5O4 (LNMO) high-voltage cathode, and after cycling of the cathode in a battery electrolyte, the LTO film was investigated by means of synchrotron radiation based hard X-ray photoelectron spectroscopy (HAXPES). By tuning the photon energy between 2 keV and 6 keV, we obtained non-destructive depth profiles of the coating material with probing depths ranging from 6 nm to 20 nm. The coating was found to be covered by a few nanometers thin surface layer resulting from electrolyte decomposition. This layer consisted predominantly of organic polymers as well as metal fluorides and fluorophosphates. A positive influence of the Li4Ti5O12 coating with regard to the size and stability of the surface layer was found. The coating itself consisted of a uniform mixture of Li(I), Ti(IV), Ni(II) and Mn(IV) oxides that most likely adopted a spinel structure by forming a solid solution of the two spinels LiNi0.5Mn1.5O4 and Li4Ti5O12 with Li, Mn, Ni and Ti cations mixing on the spinel octahedral sites. The diffusion of Ni and Mn ions into the Li4Ti5O12 lattice occurred during the heat treatment when preparing the cathode. The doping of Li4Ti5O12 with the open d-shell ions Ni(2+) (d(8)) and Mn(4+) (d(3)) should increase the electronic conductivity of the coating significantly, as was found in previous studies. The complex signal structure of the Ti 2p, Ni 2p and Mn 2p core levels provides insight into the chemical nature of the transition metal ions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Ano de publicação: 2015 Tipo de documento: Article