Your browser doesn't support javascript.
loading
Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model.
Nizzardo, Monica; Simone, Chiara; Rizzo, Federica; Salani, Sabrina; Dametti, Sara; Rinchetti, Paola; Del Bo, Roberto; Foust, Kevin; Kaspar, Brian K; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania.
Afiliação
  • Nizzardo M; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Simone C; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Rizzo F; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Salani S; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Dametti S; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Rinchetti P; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Del Bo R; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Foust K; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
  • Kaspar BK; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA. ; The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA. ; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
  • Bresolin N; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Comi GP; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
  • Corti S; Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, and Neurology Unit, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy.
Sci Adv ; 1(2): e1500078, 2015 Mar.
Article em En | MEDLINE | ID: mdl-26601156
ABSTRACT
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease affecting children. It is caused by mutations in the IGHMBP2 gene (11q13) and presently has no cure. Recently, adeno-associated virus serotype 9 (AAV9)-mediated gene therapy has been shown to rescue the phenotype of animal models of another lower motor neuron disorder, spinal muscular atrophy 5q, and a clinical trial with this strategy is ongoing. We report rescue of the disease phenotype in a SMARD1 mouse model after therapeutic delivery via systemic injection of an AAV9 construct encoding the wild-type IGHMBP2 to replace the defective gene. AAV9-IGHMBP2 administration restored protein levels and rescued motor function, neuromuscular physiology, and life span (450% increase), ameliorating pathological features in the central nervous system, muscles, and heart. To test this strategy in a human model, we transferred wild-type IGHMBP2 into human SMARD1-induced pluripotent stem cell-derived motor neurons; these cells exhibited increased survival and axonal length in long-term culture. Our data support the translational potential of AAV-mediated gene therapies for SMARD1, opening the door for AAV9-mediated therapy in human clinical trials.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2015 Tipo de documento: Article