Your browser doesn't support javascript.
loading
The Hydrated Electron as a Pseudo-Atom in Cavity-Bound Water Clusters.
Taylor, Alexis; Matta, Chérif F; Boyd, Russell J.
Afiliação
  • Taylor A; Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4J3, and Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, Canada B3M 2J6.
  • Matta CF; Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4J3, and Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, Canada B3M 2J6.
  • Boyd RJ; Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4J3, and Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS, Canada B3M 2J6.
J Chem Theory Comput ; 3(3): 1054-63, 2007 May.
Article em En | MEDLINE | ID: mdl-26627424
ABSTRACT
Anionic water clusters, (H2O)n(-), of various sizes, n = 1-8, have been investigated using high-level ab initio calculations and the quantum theory of atoms in molecules, which provides a topological analysis of the electron density. The results of the current study indicate that the distribution of the excess electron is dependent on the geometry of the cluster. Non-nuclear attractors (NNAs), with associated pseudo-atomic basins and populations, are observed only in the highly symmetric clusters in which several non-hydrogen-bonded (NHB) hydrogen atoms are oriented toward a central cavity. For the latter cases, the non-nuclear attractor can be considered a pseudo-atom, possessing a significant portion of the excess electron within the cavity, consistent with the cavity-bound model of the solvated electron. In some cases, the population of the NNA is more than 0.2 electrons, and it contributes in excess of 20 kJ/mol to the energy of the system. Furthermore, the less symmetric systems, which tend to orient the NHB hydrogen atoms away from the center of the cluster, tend to delocalize the excess electron to a greater extent over several atoms at the surface of the cluster, consistent with the surface-bound model of the excess electron.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Theory Comput Ano de publicação: 2007 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Theory Comput Ano de publicação: 2007 Tipo de documento: Article