Your browser doesn't support javascript.
loading
Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells.
Roy, Kislay; Patel, Yogesh S; Kanwar, Rupinder K; Rajkhowa, Rangam; Wang, Xungai; Kanwar, Jagat R.
Afiliação
  • Roy K; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia.
  • Patel YS; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia.
  • Kanwar RK; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia.
  • Rajkhowa R; Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC, Australia.
  • Wang X; Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC, Australia.
  • Kanwar JR; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia.
Int J Nanomedicine ; 11: 25-44, 2016.
Article em En | MEDLINE | ID: mdl-26730188
This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR-) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Sistemas de Liberação de Medicamentos / Seda / Nanopartículas / Lactoferrina Limite: Animals / Female / Humans Idioma: En Revista: Int J Nanomedicine Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Sistemas de Liberação de Medicamentos / Seda / Nanopartículas / Lactoferrina Limite: Animals / Female / Humans Idioma: En Revista: Int J Nanomedicine Ano de publicação: 2016 Tipo de documento: Article