Your browser doesn't support javascript.
loading
A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties.
Martinez-Marcos, Laura; Lamprou, Dimitrios A; McBurney, Roy T; Halbert, Gavin W.
Afiliação
  • Martinez-Marcos L; EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Ca
  • Lamprou DA; EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Ca
  • McBurney RT; EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Ca
  • Halbert GW; EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Ca
Int J Pharm ; 499(1-2): 175-185, 2016 Feb 29.
Article em En | MEDLINE | ID: mdl-26768722
The main aim of the research focused on the production of hot-melt extrusion (HME) formulations with increased dissolution properties of albendazole (ABZ). Therefore, HME was applied as a continuous manufacturing technique to produce amorphous solid dispersions of the poorly water soluble drug ABZ combined with the polymer matrix polyvinylpyrrolidone PVP K12. HME formulations of ABZ-PVP K12 comprised a drug content of 1%, 5% and 10% w/w. The main analytical characterisation techniques used were scanning electron microscopy (SEM), micro-computed tomography (µ-CT), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and dissolution profile studies. The application of SEM, XRPD and DSC evidenced drug physical transformation from crystalline to amorphous state and therefore, the achievement of an amorphous solid dispersion. The introduction of a novel technique, µ-CT, to characterise the internal structure of these materials revealed key information regarding materials distribution and void content. Dissolution profile studies evidenced a high increase in drug release profile compared to pure ABZ. These promising results can lead to a great enhancement of the oral bioavailability of ABZ dosage forms. Therefore, HME is a potential continuous manufacturing technique to overcome ABZ poor solubility properties and lead to a significant increase in the therapeutic effect.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Albendazol / Química Farmacêutica / Povidona Idioma: En Revista: Int J Pharm Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Albendazol / Química Farmacêutica / Povidona Idioma: En Revista: Int J Pharm Ano de publicação: 2016 Tipo de documento: Article