Your browser doesn't support javascript.
loading
Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction.
Huber, B R; Meabon, J S; Hoffer, Z S; Zhang, J; Hoekstra, J G; Pagulayan, K F; McMillan, P J; Mayer, C L; Banks, W A; Kraemer, B C; Raskind, M A; McGavern, D B; Peskind, E R; Cook, D G.
Afiliação
  • Huber BR; VA Jamaica Plain, Department of Neurology, Boston University School of Medicine, Jamaica Plain, MA, USA.
  • Meabon JS; Northwest Network Mental Illness, Research, Education, and Clinical Center (MIRECC), VA Puget Sound Healthcare Systems, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
  • Hoffer ZS; United States Army, Madigan Army Medical Center, Joint Base Lewis-McChord, WA, USA.
  • Zhang J; Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.
  • Hoekstra JG; Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.
  • Pagulayan KF; Northwest Network Mental Illness, Research, Education, and Clinical Center (MIRECC), VA Puget Sound Healthcare Systems, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
  • McMillan PJ; Northwest Network Mental Illness, Research, Education, and Clinical Center (MIRECC), VA Puget Sound Healthcare Systems, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
  • Mayer CL; Northwest Network Mental Illness, Research, Education, and Clinical Center (MIRECC), VA Puget Sound Healthcare Systems, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
  • Banks WA; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
  • Kraemer BC; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
  • Raskind MA; Northwest Network Mental Illness, Research, Education, and Clinical Center (MIRECC), VA Puget Sound Healthcare Systems, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
  • McGavern DB; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
  • Peskind ER; Northwest Network Mental Illness, Research, Education, and Clinical Center (MIRECC), VA Puget Sound Healthcare Systems, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
  • Cook DG; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington Scho
Neuroscience ; 319: 206-20, 2016 Apr 05.
Article em En | MEDLINE | ID: mdl-26777891
ABSTRACT
Exposure to blast overpressure (BOP) is associated with behavioral, cognitive, and neuroimaging abnormalities. We investigated the dynamic responses of cortical vasculature and its relation to microglia/macrophage activation in mice using intravital two-photon microscopy following mild blast exposure. We found that blast caused vascular dysfunction evidenced by microdomains of aberrant vascular permeability. Microglial/macrophage activation was specifically associated with these restricted microdomains, as evidenced by rapid microglial process retraction, increased ameboid morphology, and escape of blood-borne Q-dot tracers that were internalized in microglial/macrophage cell bodies and phagosome-like compartments. Microdomains of cortical vascular disruption and microglial/macrophage activation were also associated with aberrant tight junction morphology that was more prominent after repetitive (3×) blast exposure. Repetitive, but not single, BOPs also caused TNFα elevation two weeks post-blast. In addition, following a single BOP we found that aberrantly phosphorylated tau rapidly accumulated in perivascular domains, but cleared within four hours, suggesting it was removed from the perivascular area, degraded, and/or dephosphorylated. Taken together these findings argue that mild blast exposure causes an evolving CNS insult that is initiated by discrete disturbances of vascular function, thereby setting the stage for more protracted and more widespread neuroinflammatory responses.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismos por Explosões / Lesões Encefálicas / Microglia / Macrófagos Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Neuroscience Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismos por Explosões / Lesões Encefálicas / Microglia / Macrófagos Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Revista: Neuroscience Ano de publicação: 2016 Tipo de documento: Article