Your browser doesn't support javascript.
loading
Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries.
Wang, Qian; Leo, M Dennis; Narayanan, Damodaran; Kuruvilla, Korah P; Jaggar, Jonathan H.
Afiliação
  • Wang Q; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
  • Leo MD; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
  • Narayanan D; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
  • Kuruvilla KP; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
  • Jaggar JH; Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee jjaggar@uthsc.edu.
Am J Physiol Cell Physiol ; 310(11): C1001-9, 2016 06 01.
Article em En | MEDLINE | ID: mdl-27147559
ABSTRACT
Anoctamin-1 [ANO1, also known as transmembrane protein 16A (TMEM16A)] is a Ca(2+)-activated Cl(-) channel expressed in arterial myocytes that regulates membrane potential and contractility. Signaling mechanisms that control ANO1 activity in arterial myocytes are poorly understood. In cerebral artery myocytes, ANO1 channels are activated by local Ca(2+) signals generated by plasma membrane nonselective cation channels, but the molecular identity of these proteins is unclear. Arterial myocytes express several different nonselective cation channels, including multiple members of the transient receptor potential receptor (TRP) family. The goal of this study was to identify localized ion channels that control ANO1 currents in cerebral artery myocytes. Coimmunoprecipitation and immunofluorescence resonance energy transfer microscopy experiments indicate that ANO1 and canonical TRP 6 (TRPC6) channels are present in the same macromolecular complex and localize in close spatial proximity in the myocyte plasma membrane. In contrast, ANO1 is not near TRPC3, TRP melastatin 4, or inositol trisphosphate receptor 1 channels. Hyp9, a selective TRPC6 channel activator, stimulated Cl(-) currents in myocytes that were blocked by T16Ainh-A01, an ANO1 inhibitor, ANO1 knockdown using siRNA, and equimolar replacement of intracellular EGTA with BAPTA, a fast Ca(2+) chelator that abolishes local Ca(2+) signaling. Hyp9 constricted pressurized cerebral arteries, and this response was attenuated by T16Ainh-A01. In contrast, T16Ainh-A01 did not alter depolarization-induced (60 mM K(+)) vasoconstriction. These data indicate that TRPC6 channels generate a local intracellular Ca(2+) signal that activates nearby ANO1 channels in myocytes to stimulate vasoconstriction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vasoconstrição / Canais de Cloreto / Miócitos de Músculo Liso / Canais de Cátion TRPC / Músculo Liso Vascular Limite: Animals Idioma: En Revista: Am J Physiol Cell Physiol Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vasoconstrição / Canais de Cloreto / Miócitos de Músculo Liso / Canais de Cátion TRPC / Músculo Liso Vascular Limite: Animals Idioma: En Revista: Am J Physiol Cell Physiol Ano de publicação: 2016 Tipo de documento: Article