Your browser doesn't support javascript.
loading
Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy.
Riss, Alexander; Paz, Alejandro Pérez; Wickenburg, Sebastian; Tsai, Hsin-Zon; De Oteyza, Dimas G; Bradley, Aaron J; Ugeda, Miguel M; Gorman, Patrick; Jung, Han Sae; Crommie, Michael F; Rubio, Angel; Fischer, Felix R.
Afiliação
  • Riss A; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Paz AP; Institute of Applied Physics, Vienna University of Technology, 1040 Wien, Austria.
  • Wickenburg S; Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain.
  • Tsai HZ; Department of Physics, University of California, Berkeley, California 94720, USA.
  • De Oteyza DG; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Bradley AJ; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Ugeda MM; Donostia International Physics Center, 20018 San Sebastián, Spain.
  • Gorman P; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
  • Jung HS; Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain.
  • Crommie MF; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Rubio A; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Fischer FR; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
Nat Chem ; 8(7): 678-83, 2016 07.
Article em En | MEDLINE | ID: mdl-27325094
Chemical transformations at the interface between solid/liquid or solid/gaseous phases of matter lie at the heart of key industrial-scale manufacturing processes. A comprehensive study of the molecular energetics and conformational dynamics that underlie these transformations is often limited to ensemble-averaging analytical techniques. Here we report the detailed investigation of a surface-catalysed cross-coupling and sequential cyclization cascade of 1,2-bis(2-ethynyl phenyl)ethyne on Ag(100). Using non-contact atomic force microscopy, we imaged the single-bond-resolved chemical structure of transient metastable intermediates. Theoretical simulations indicate that the kinetic stabilization of experimentally observable intermediates is determined not only by the potential-energy landscape, but also by selective energy dissipation to the substrate and entropic changes associated with key transformations along the reaction pathway. The microscopic insights gained here pave the way for the rational design and control of complex organic reactions at the surface of heterogeneous catalysts.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Chem Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Chem Ano de publicação: 2016 Tipo de documento: Article