Your browser doesn't support javascript.
loading
Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle.
Feinberg, Hadar; Rambaruth, Neela D S; Jégouzo, Sabine A F; Jacobsen, Kristian M; Djurhuus, Rasmus; Poulsen, Thomas B; Weis, William I; Taylor, Maureen E; Drickamer, Kurt.
Afiliação
  • Feinberg H; From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305.
  • Rambaruth ND; the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom, and.
  • Jégouzo SA; the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom, and.
  • Jacobsen KM; Chemical Biology Laboratory, Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark.
  • Djurhuus R; Chemical Biology Laboratory, Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark.
  • Poulsen TB; Chemical Biology Laboratory, Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark.
  • Weis WI; From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305.
  • Taylor ME; the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom, and.
  • Drickamer K; the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom, and k.drickamer@imperial.ac.uk.
J Biol Chem ; 291(40): 21222-21233, 2016 Sep 30.
Article em En | MEDLINE | ID: mdl-27542410
ABSTRACT
The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are attached to the 6-hydroxyl groups, has been the subject of speculation. In the work reported here, the interaction of trehalose derivatives with bovine mincle has been probed with a series of synthetic mimics of trehalose dimycolate in binding assays, in structural studies by x-ray crystallography, and by site-directed mutagenesis. Binding studies reveal that, rather than reflecting specific structural preference, the apparent affinity of mincle for ligands with hydrophobic substituents correlates with their overall size. Structural and mutagenesis analysis provides evidence for interaction of the hydrophobic substituents with multiple different portions of the surface of mincle and confirms the presence of three Ca2+-binding sites. The structure of an extended portion of the extracellular domain of mincle, beyond the minimal C-type carbohydrate recognition domain, also constrains the way the binding domains may interact on the surface of macrophages.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Trealose / Lectinas Tipo C Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 3_ND Base de dados: MEDLINE Assunto principal: Trealose / Lectinas Tipo C Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2016 Tipo de documento: Article