Your browser doesn't support javascript.
loading
High-resolution diffusion MRI at 7T using a three-dimensional multi-slab acquisition.
Wu, Wenchuan; Poser, Benedikt A; Douaud, Gwenaëlle; Frost, Robert; In, Myung-Ho; Speck, Oliver; Koopmans, Peter J; Miller, Karla L.
Afiliação
  • Wu W; FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK. Electronic address: wenchuan.wu@ndcn.ox.ac.uk.
  • Poser BA; Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre, Faculty of Psychology & Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht, The Netherlands.
  • Douaud G; FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
  • Frost R; FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
  • In MH; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
  • Speck O; Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; German Center for Neurodegenerative Disease, Site Magdeburg, Germany.
  • Koopmans PJ; FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
  • Miller KL; FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
Neuroimage ; 143: 1-14, 2016 Dec.
Article em En | MEDLINE | ID: mdl-27570110
ABSTRACT
High-resolution diffusion MRI can provide the ability to resolve small brain structures, enabling investigations of detailed white matter architecture. A major challenge for in vivo high-resolution diffusion MRI is the low signal-to-noise ratio. In this work, we combine two highly compatible methods, ultra-high field and three-dimensional multi-slab acquisition to improve the SNR of high-resolution diffusion MRI. As each kz plane is encoded using a single-shot echo planar readout, scan speeds of the proposed technique are similar to the commonly used two-dimensional diffusion MRI. In-plane parallel acceleration is applied to reduce image distortions. To reduce the sensitivity of auto-calibration signal data to subject motion and respiration, several new adaptions of the fast low angle excitation echo-planar technique (FLEET) that are suitable for 3D multi-slab echo planar imaging are proposed and evaluated. A modified reconstruction scheme is proposed for auto-calibration with the most robust method, Slice-FLEET acquisition, to make it compatible with navigator correction of motion induced phase errors. Slab boundary artefacts are corrected using the nonlinear slab profile encoding method recently proposed by our group. In vivo results demonstrate that using 7T and three-dimensional multi-slab acquisition with improved auto-calibration signal acquisition and nonlinear slab boundary artefacts correction, high-quality diffusion MRI data with ~1mm isotropic resolution can be achieved.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Interpretação de Imagem Assistida por Computador / Imagem Ecoplanar / Imagem de Tensor de Difusão Limite: Humans Idioma: En Revista: Neuroimage Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Interpretação de Imagem Assistida por Computador / Imagem Ecoplanar / Imagem de Tensor de Difusão Limite: Humans Idioma: En Revista: Neuroimage Ano de publicação: 2016 Tipo de documento: Article