Your browser doesn't support javascript.
loading
Hyaluronic Acid Stabilized Iodine-Containing Nanoparticles with Au Nanoshell Coating for X-ray CT Imaging and Photothermal Therapy of Tumors.
Liu, Xinghua; Gao, Chunhui; Gu, Junheng; Jiang, Yunfang; Yang, Xinlin; Li, Shaoyong; Gao, Wei; An, Tong; Duan, Hongquan; Fu, Jingwei; Wang, Yinsong; Yang, Xiaoying.
Afiliação
  • Liu X; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • Gao C; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • Gu J; Tianjin Chest Hospital , Tianjin 300051, PR China.
  • Jiang Y; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • Yang X; Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, PR China.
  • Li S; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • Gao W; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • An T; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • Duan H; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • Fu J; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • Wang Y; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
  • Yang X; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Basic Medical Research Center, Tianjin Medical University , No. 22 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
ACS Appl Mater Interfaces ; 8(41): 27622-27631, 2016 Oct 19.
Article em En | MEDLINE | ID: mdl-27686162
ABSTRACT
In recent years, considerable efforts have been made for the development of multifunctional nanoparticles with diagnosis and therapy functions. To achieve enhanced CT imaging and photothermal therapy on the tumor, we employed iodinated nanoparticles as template to construct Au nanoshell structure and demonstrated a facile but effective approach to synthesize biocompatible and well-dispersed multifunctional nanoparticles by coating iodinated nanoparticles with Au nanoshell and subsequent surface modification by hyaluronic acid. The resultant poly(2-methacryl(3-amide-2,4,6-triiodobenzoic acid))/polyethylenimine/Au nanoshell/hyaluronic acid (PMATIB/PEI/Au nanoshell/HA) nanoparticles had relatively high X-ray attenuation coefficient and photothermal efficiency. After intravenous injection into MCF-7 tumor-bearing mice, PMATIB/PEI/Au nanoshell/HA nanoparticles were efficiently accumulated in the tumor, remarkably enhanced the tumor CT imaging, and selectively ablated the tumor through the thermal treatment of lesions under the NIR irradiation. Thus, PMATIB/PEI/Au nanoshell/HA nanoparticles displayed a great potential for CT diagnosis and CT-guided, focused photothermal tumor therapy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Ano de publicação: 2016 Tipo de documento: Article