Your browser doesn't support javascript.
loading
The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells.
Han, Jingyan; Weisbrod, Robert M; Shao, Di; Watanabe, Yosuke; Yin, Xiaoyan; Bachschmid, Markus M; Seta, Francesca; Janssen-Heininger, Yvonne M W; Matsui, Reiko; Zang, Mengwei; Hamburg, Naomi M; Cohen, Richard A.
Afiliação
  • Han J; Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA. Electronic address: jingyanh@bu.edu.
  • Weisbrod RM; Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
  • Shao D; Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
  • Watanabe Y; Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
  • Yin X; Framingham Heart Study, Boston University School of Medicine, Boston, MA, USA.
  • Bachschmid MM; Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
  • Seta F; Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
  • Janssen-Heininger YMW; Department of Pathology, University of Vermont College of Medicine, Burlington, VT, USA.
  • Matsui R; Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
  • Zang M; Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
  • Hamburg NM; Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
  • Cohen RA; Vascular Biology Section, Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.
Redox Biol ; 9: 306-319, 2016 10.
Article em En | MEDLINE | ID: mdl-27693992
BACKGROUND: Oxidative stress is implicated in increased vascular permeability associated with metabolic disorders, but the underlying redox mechanism is poorly defined. S-glutathionylation, a stable adduct of glutathione with protein sulfhydryl, is a reversible oxidative modification of protein and is emerging as an important redox signaling paradigm in cardiovascular physiopathology. The present study determines the role of protein S-glutathionylation in metabolic stress-induced endothelial cell permeability. METHODS AND RESULTS: In endothelial cells isolated from patients with type-2 diabetes mellitus, protein S-glutathionylation level was increased. This change was also observed in aortic endothelium in ApoE deficient (ApoE-/-) mice fed on Western diet. Metabolic stress-induced protein S-glutathionylation in human aortic endothelial cells (HAEC) was positively correlated with elevated endothelial cell permeability, as reflected by disassembly of cell-cell adherens junctions and cortical actin structures. These impairments were reversed by adenoviral overexpression of a specific de-glutathionylation enzyme, glutaredoxin-1 in cultured HAECs. Consistently, transgenic overexpression of human Glrx-1 in ApoE-/- mice fed the Western diet attenuated endothelial protein S-glutathionylation, actin cytoskeletal disorganization, and vascular permeability in the aorta. Mechanistically, glutathionylation and inactivation of Rac1, a small RhoGPase, were associated with endothelial hyperpermeability caused by metabolic stress. Glutathionylation of Rac1 on cysteine 81 and 157 located adjacent to guanine nucleotide binding site was required for the metabolic stress to inhibit Rac1 activity and promote endothelial hyperpermeability. CONCLUSIONS: Glutathionylation and inactivation of Rac1 in endothelial cells represent a novel redox mechanism of vascular barrier dysfunction associated with metabolic disorders.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredução / Endotélio Vascular / Doenças Metabólicas Tipo de estudo: Risk_factors_studies Limite: Animals / Humans / Male Idioma: En Revista: Redox Biol Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredução / Endotélio Vascular / Doenças Metabólicas Tipo de estudo: Risk_factors_studies Limite: Animals / Humans / Male Idioma: En Revista: Redox Biol Ano de publicação: 2016 Tipo de documento: Article