Your browser doesn't support javascript.
loading
Efficient GSH delivery using PAMAM-GSH into MPP-induced PC12 cellular model for Parkinson's disease.
Sun, Hong-Ji; Wang, Yan; Hao, Tong; Wang, Chang-Yong; Wang, Qi-Yu; Jiang, Xiao-Xia.
Afiliação
  • Sun HJ; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China.
  • Wang Y; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China.
  • Hao T; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China.
  • Wang CY; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China.
  • Wang QY; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China.
  • Jiang XX; Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China.
Regen Biomater ; 3(5): 299-307, 2016 Oct.
Article em En | MEDLINE | ID: mdl-27699060
ABSTRACT
Glutathione (GSH) depletion has been an important contributor to the dysfunction of dopamine neurons. Polyamidoamine-GSH (PAMAM-GSH) was synthesized and the delivery effect of GSH into PC12 cells was tested. MTT assessment for cytotoxicity and reactive oxygen species (ROS) as well as nitrite oxide (NO) and intracelluar superoxide dismutase (SOD) detection for antioxidative ability were performed. Furthermore, the antiapoptotic ability was analysed by assessing caspase-3, JNK1/2 and Erk1/2 expression. Our data indicated that PAMAM-GSH is an effective agent to replenish GSH into PC12 cells. PAMAM-GSH developed its antioxidative and protective ability for 1-methyl-4-phenylpyridinium (MPP)-induced PC12 cells by reducing the intracellular levels of ROS and SOD activity as well as decreasing the release of NO. Meanwhile, PAMAM-GSH could inhibit caspase-3 activation and might show its antiapoptotic ability to MPP-induced PC12 cells through JNK2/Erk1/2 pathway. In summary, these studies suggest that PAMAM-GSH conjugate has an intrinsic ability to penetrate PC12 cells and deliver GSH into these cells which may provide a new strategy for clinical applications in the treatment of Parkinson's disease.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Regen Biomater Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Regen Biomater Ano de publicação: 2016 Tipo de documento: Article