Your browser doesn't support javascript.
loading
Big Data, Predictive Analytics, and Quality Improvement in Kidney Transplantation: A Proof of Concept.
Srinivas, T R; Taber, D J; Su, Z; Zhang, J; Mour, G; Northrup, D; Tripathi, A; Marsden, J E; Moran, W P; Mauldin, P D.
Afiliação
  • Srinivas TR; Division of Nephrology, Medical University of South Carolina, Charleston, SC.
  • Taber DJ; Division of Transplant Surgery, Medical University of South Carolina, Charleston, SC.
  • Su Z; Division of General Internal Medicine & Geriatrics, Medical University of South Carolina, Charleston, SC.
  • Zhang J; Division of General Internal Medicine & Geriatrics, Medical University of South Carolina, Charleston, SC.
  • Mour G; Division of Nephrology, Medical University of South Carolina, Charleston, SC.
  • Northrup D; Office of the Chief Information Officer, Medical University of South Carolina, Charleston, SC.
  • Tripathi A; IBM Corporation, Armonk, NY.
  • Marsden JE; Division of General Internal Medicine & Geriatrics, Medical University of South Carolina, Charleston, SC.
  • Moran WP; Division of General Internal Medicine & Geriatrics, Medical University of South Carolina, Charleston, SC.
  • Mauldin PD; Division of General Internal Medicine & Geriatrics, Medical University of South Carolina, Charleston, SC.
Am J Transplant ; 17(3): 671-681, 2017 03.
Article em En | MEDLINE | ID: mdl-27804279
We sought proof of concept of a Big Data Solution incorporating longitudinal structured and unstructured patient-level data from electronic health records (EHR) to predict graft loss (GL) and mortality. For a quality improvement initiative, GL and mortality prediction models were constructed using baseline and follow-up data (0-90 days posttransplant; structured and unstructured for 1-year models; data up to 1 year for 3-year models) on adult solitary kidney transplant recipients transplanted during 2007-2015 as follows: Model 1: United Network for Organ Sharing (UNOS) data; Model 2: UNOS & Transplant Database (Tx Database) data; Model 3: UNOS, Tx Database & EHR comorbidity data; and Model 4: UNOS, Tx Database, EHR data, Posttransplant trajectory data, and unstructured data. A 10% 3-year GL rate was observed among 891 patients (2007-2015). Layering of data sources improved model performance; Model 1: area under the curve (AUC), 0.66; (95% confidence interval [CI]: 0.60, 0.72); Model 2: AUC, 0.68; (95% CI: 0.61-0.74); Model 3: AUC, 0.72; (95% CI: 0.66-077); Model 4: AUC, 0.84, (95 % CI: 0.79-0.89). One-year GL (AUC, 0.87; Model 4) and 3-year mortality (AUC, 0.84; Model 4) models performed similarly. A Big Data approach significantly adds efficacy to GL and mortality prediction models and is EHR deployable to optimize outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Temas: Promover_ampliacao_atencao_especializada Contexto em Saúde: 1_ASSA2030 / 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Obtenção de Tecidos e Órgãos / Bases de Dados Factuais / Transplante de Rim / Melhoria de Qualidade / Falência Renal Crônica Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Am J Transplant Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Temas: Promover_ampliacao_atencao_especializada Contexto em Saúde: 1_ASSA2030 / 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Obtenção de Tecidos e Órgãos / Bases de Dados Factuais / Transplante de Rim / Melhoria de Qualidade / Falência Renal Crônica Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Am J Transplant Ano de publicação: 2017 Tipo de documento: Article