Your browser doesn't support javascript.
loading
Dexamethasone and levetiracetam reduce hetero-cellular gap-junctional coupling between F98 glioma cells and glial cells in vitro.
Ismail, Fatme Seval; Moinfar, Zahra; Prochnow, Nora; Dambach, Hannes; Hinkerohe, Daniel; Haase, Claus Gert; Förster, Eckart; Faustmann, Pedro Michael.
Afiliação
  • Ismail FS; Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany. ismaf88@gmail.com.
  • Moinfar Z; Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany. ismaf88@gmail.com.
  • Prochnow N; Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
  • Dambach H; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
  • Hinkerohe D; Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
  • Haase CG; Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
  • Förster E; Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
  • Faustmann PM; Department of Neurology and Clinical Neurophysiology, Evangelical Hospital Gelsenkirchen, Gelsenkirchen, Germany.
J Neurooncol ; 131(3): 469-476, 2017 02.
Article em En | MEDLINE | ID: mdl-27848138
ABSTRACT
Gap junctions (GJs) in astrocytes and glioma cells are important channels for cell-to-cell communication that contribute to homo- and heterocellular coupling. According to recent studies, heterocellular gap-junctional communication (H-GJC) between glioma cells and their surrounding environment enhances glioma progression. Therefore, we developed a new in vitro model to examine H-GJC between glioma cells, astrocytes and microglia. Consequently, F98 rat glioma cells were double-labeled with GJ-impermeable (CM-DiI) and GJ-permeable dye (calcein AM) and were seeded on unlabeled astrocyte-microglia co-cultures. Dual whole cell voltage clamp recordings were carried out on selected cell pairs to characterize the functional properties of H-GJC in vitro. The expression of four types of connexins (Cxs), including Cx32, Cx36, Cx43 and Cx45, and microglial phenotypes were analyzed by immunocytochemistry. The H-GJC between glioma cells and astrocytes/microglia increased after a longer incubation period with a higher number of glioma cells. We provided evidence for the direct GJ coupling of microglia and glioma cells under native in vitro conditions. In addition, we exploited this model to evaluate H-GJC after incubation with levetiracetam (LEV) and/or dexamethasone (DEX). Previous in vitro studies suggest that LEV and DEX are frequently used to control seizure and edema in glioma. Our findings showed that LEV and/or DEX decrease the number of heterocellular coupled cells significantly. In conclusion, our newly developed model demonstrated H-GJC between glioma cells and both astrocytes and microglia. The reduced H-GJC by LEV and DEX suggests a potential effect of both drugs on glioma progression.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 / 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Piracetam / Dexametasona / Comunicação Celular / Neuroglia / Junções Comunicantes / Glioma / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Neurooncol Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Contexto em Saúde: 1_ASSA2030 / 6_ODS3_enfermedades_notrasmisibles Base de dados: MEDLINE Assunto principal: Piracetam / Dexametasona / Comunicação Celular / Neuroglia / Junções Comunicantes / Glioma / Antineoplásicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Neurooncol Ano de publicação: 2017 Tipo de documento: Article